
Statistical Learning Theory

Yale University STAT 669 (Fall 2025)

Professor: Dr. Omar Montasser

Scribe: Anish Lakkapragada

Contents

1 PAC Learning and VC Theory 1
1.1 Course Logistics (Lecture 1) . 1
1.2 Introducing the Statistical Learning Theory Framework (Lecture 1) 1
1.3 Consistent Learning Rule Bound for Finite Hypothesis Class (Lecture 1) 3
1.4 Uniform Convergence & the Probably Approximately Correct (PAC) Framework

(Lecture 2) . 5
1.5 Vapnik-Chervonenkis (VC) Dimension (Lecture 2) 7
1.6 PAC-Learnability of Hypothesis Classes with Finite VC Dimension (Lecture 3) . . . 8

2 Computational Aspects of PAC Learning 14
2.1 Efficient PAC Learnability (Lecture 4 & 5) . 14

3 Non-Uniform Learning 21
3.1 Non-Uniform Learning over Countable Hypothesis Classes (Lecture 5) 21
3.2 Non-Uniform Learning over Uncountable Hypothesis Classes (Lecture 5) 23

4 Boosting & Sample Compression 27
4.1 Introduction to Boosting (Lecture 6) . 27
4.2 Introduction to Sample Compression Learning (Lecture 6) 32
4.3 Margin-Based Analysis of Boosting (Lecture 7) . 35
4.4 Sample Compression Schemes, Revisited (Lecture 7) 38

5 Rademacher Complexity 42
5.1 Introduction to Rademacher Complexity (Lecture 8) 42
5.2 Applications of Rademacher Complexity & Other Complexity Measures (Lecture 8) 45

6 Online Learning 48
6.1 Introduction to Online Learning (Lecture 9) . 48
6.2 Littlestone Dimension for Online Learning (Lecture 9) 51
6.3 Beyond Realizability: Introducing Regret (Lecture 10) 54
6.4 Connecting Boosting and Online Learning (Lecture 10) 58
6.5 Margin-Based Learning (Lecture 11) . 60

7 An Aside: Game-Theoretic Learning (Lecture 11) 66

8 One-Inclusion Graph (Lecture 12) 69

i

Preface

These are my scribed notes from Yale’s STAT 669: Statistical Learning Theory course taught by
Dr. Omar Montasser during the Fall 2025 semester. Please contact me for any questions or errors.
Enjoy!

0

mailto:anish.lakkapragada@yale.edu

Chapter 1

PAC Learning and VC Theory

1.1 Course Logistics (Lecture 1)

We start the class by introducing our names & majors before getting into objectives of this course.
Omar also covers the syllabus (recommended prerequisites, grading, and AI policy) before going
over a roadmap of the things we will cover. Okay, let’s start!

1.2 Introducing the Statistical Learning Theory Framework (Lec-
ture 1)

We now introduce the statistical learning theory framework where we have the following objects:

• Domain X (e.g. X = Rd) where each x ∈ X is called an “instance”

• Label Space Y (e.g. Y = {±1} or Y = R)

• Unknown source distribution D over X × Y . This is an assumption on the data generating
process (formed by “nature” or “reality”).

• Goal: find a predictor h : X → Y with small expected error LD(h) := P(x,y)∼D{h(x) ̸= y}.

• Access to an oracle: We have an i.i.d training sample S = {(xi, yi)}mi=1 drawn from D (notated
by S ∼ Dm)

Restated, our goal is to create some learner A : (X×Y)⋆ → Y X , where the ⋆ denotes a variable-
length sequence of X × Y (i.e. our dataset) and Y X is the set of all functions mapping from X to
Y .

Omar notes that we will first start by assuming that any instance x ∈ X has a “ground-truth”
label, as opposed to a case where D allows for 50% probability mass on (x,+1) and (x,−1) (such
a case could happen to to reflect uncertainty in the label of x). More generally, we will start with
these strong assumptions in the bulleted list above and relax them later.

It’s worth emphasizing two main assumptions about our data within this framework:

• We observe i.i.d training samples from (unknown) distribution D.

1

• Future (unseen) examples are drawn from the same distribution D.

The second point is easier to forget.

Expected vs. Empirical Error. Let’s look a bit more closely at our objective: minimizing our
expected error

LD(h) := P(x,y)∼D{h(x) ̸= y} (1.1)

Why not minimize this directly? Answer: we don’t assume access to the data distribution D.
Hence, given some sample S we use the empirical error :

LS(h) =
1

m

m∑
i=1

1{h(xi) ̸= yi} (1.2)

as our proxy to D. While this is a typical setup in machine learning, it leads to the following
questions:

• How should we use the empirical error?

• Is it a good estimate for the expected error? And how good?

Specifically, we are interested in their difference:

|LD(h)− LS(h)| = |P(x,y)∼D{h(x) ̸= y} − 1

m

m∑
i=1

1{h(xi) ̸= yi}| (1.3)

Please recognize that the empirical error LS(h) is a random variable as it is a function of the
randomly drawn dataset S ∼ Dm whereas LD(h) is just a population statistic. The relationship
between the two should be more clear from the below quick exercise:

∀ h : X → {±1} with D over X × {±1}, show that ES∼Dm [LS(h)] = LD(h) (1.4)

But this is not a useful fact as its an asymptotic, and we are more interested in the difference
in the case of a finite dataset size m. Thus, we often use tools like concentration inequalities (e.g.
Hoeffding’s) to create bounds like the below for some fixed h and m:

PS∼Dm [|LS(h)− LD(h)| > ϵ] ≤ 2 exp(−2ϵ2m) (1.5)

Or restated equivalently (i.e. define δ := 2 exp(−2ϵ2m) and “invert” the probabilities),

PS∼Dm [|LS(h)− LD(h)| ≤
√

ln(2/δ)

2m
] ≥ 1− δ (1.6)

From this expression it should be clear that as m → ∞, our expected difference between
expected and empirical error goes to zero.

2

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

1.3 Consistent Learning Rule Bound for Finite Hypothesis Class
(Lecture 1)

Before actually creating another bound ourselves, we structure our problem even more with some
prior knowledge/decisions we make:

• We restrict ourselves to a subset of functions fromX to Y called our hypothesis class H ⊆ Y X .
Examples of H are given below:

– Linear Predictors

– Support Vector Machines (SVMs)

– Neural Networks

H will represent our “prior knowledge” or “expert knowledge”. For example, if our domain
X is a set of images we would likely consider using a convolutional neural network (CNN) as
our H as CNNs perform well on this kind of data.

• Assume some true function y = f⋆(x) where f∗ ∈ H. Our learner A will know H but not f⋆

(it will have to learn this function!).

• As an implication of the above assumption, we will say a sequence ((xi, yi))
m
i=1 is realizable

by H if the true function f⋆ ∈ H gives matching ground truth predictions1

Having established these assumptions, we are now ready to put them to use by creating our
own bound!

Warm-up: Finite Classes. Consider the following assumptions:

• H is finite

• D is realizable by H (i.e. ∃ f⋆ ∈ H s.t. LD(f
⋆) = P(x,y)∼D[f

⋆(x) ̸= y] = 0)

Note that, as stated before, we cannot minimize min
h∈H

LD(h) directly and instead must work on

our sample S ∼ Dm. We present the following definition:

Definition 1.1. We have a consistent learning rule (CLR) when for any input S = {(xi, yi)}mi=1,
we can output any h ∈ H s.t. ∀1≤i≤m, h(xi) = yi.

Then, we have the following question. If ĥ := CLRH(S) for some consistent learning rule CLRH

on hypothesis class H, what can we say about LS(ĥ)? It should be zero, but does this imply that
LD(ĥ) = 0?

Here’s a closely-related example: consider some h where LD(h) =
1
2 . This is a bad function that

is correctly 50% of the time in truth. But PS∼Dm [LS(h) = 0] > 0 ̸= 0, meaning ∃ S s.t. LS(h) = 0
(i.e. we can be fooled to think h is good on some sample S.) Thus, we now create a bound for
a finite hypothesis class to control LD(h) on some CLR-learned h.

1Mathematically speaking, this means ∀xi, f
⋆(xi) = yi =⇒ LS(f

⋆) = 0. This realizability assumption is
non-trivial and we will discuss it further in the course.

3

https://en.wikipedia.org/wiki/Convolutional_neural_network

Derivation of CLR bound for finite hypothesis class. Fix any function h ∈ H. We define
ϵ s.t. LD(h) > ϵ. We proceed with the following steps:

• We first can find the probability of the bad event (LS(h) = 0) below: 2:

PS∼Dm [LS(h) = 0] =
∏m

i=1 PS∼Dm{h(xi) = yi} =
∏m

i=1(1− LD(h)) ≤ (1− ϵ)m ≤ exp(−ϵm)

• But this is just one bad function ∈ H! We can a group of bad functions with Bϵ := {h ∈ H :
LD(h) > ϵ} ⊂ H. Then to get the probability that any CLR-learned function is “bad” we
can use a union bound :

PS∼Dm

[
CLRH(S) ∈ Bϵ

]
≤ PS∼Dm

[
∃h ∈ Bϵ : LS(h) = 0

]
(1.7)

≤
∑
h∈Bϵ

PS∼Dm

[
LS(h) = 0

]
≤ |Bϵ| e−mϵ ≤ |H| e−mϵ. (1.8)

• We can then set δ := |H| exp(−mϵ) and invert the expression to arrive at Theorem 1.2. So
to ensure CLRH(S) /∈ Bϵ ⇐⇒ CLRH(S) ≤ ϵ with probability ≥ 1 − δ for some predecided

δ ∈ (0, 1), we will need m(ϵ, δ) = ln |H|+ln(1/δ)
ϵ many samples3.

Pat yourself on the back! We resummarize this bound in the following theorem:

Theorem 1.2 (CLR Bound with (ϵ, δ) fixed). For any finite class H, any (realizable) distribution

D, any (ϵ, δ) ∈ (0, 1)2, with m = ln |H|+ln(1/δ)
ϵ , we have:

PS∼Dm [LD(CLRH(S)) ≤ ϵ] ≥ 1− δ (1.9)

Choosing to take the perspective that our number of samples m is fixed and so we are interested
in the lowest possible error we can achieve w.h.p, we can use the following theorem:

Theorem 1.3 (CLR Bound with m fixed). For any finite class H, any (realizable) distribution D,
any δ ∈ (0, 1),m ∈ N:

PS∼Dm [LD(CLRH(S)) ≤ ln |H|+ ln(1/δ)

m
] ≥ 1− δ (1.10)

This constitutes the first learning guarantee that we have derived. Note that in our derivation
we did not pay much attention to the implementation or procedure of the CLR, which will depend
on H. We also used the realizability assumption, which has some implications:

• What if there is no predictor h ∈ H s.t. LD(h) = 0?

• In such a case, can we use with minh∈H LD(h)?

2The last argument here is done using Bernoulli’s Inequality.
3To get this expression, solve for m in terms of δ.

4

In response to the second point, we will soon look at empirical risk minimization where:

ERMH(S) = argmin
h∈H

1

|S|
∑

(x,y)∈S

1{h(xi) ̸= yi} (1.11)

So given some function ĥ := ERMH(S), you might be wondering if it will satisfy our Hoeffding
bound:

PS∼Dm [|LS(ĥ)− LD(ĥ)| ≤
√

ln(2/δ)

2m
] ≥ 1− δ (1.12)

The answer is no. This is because that bound operates on a fixed h seen a priori before our
sampled data, whereas ĥ is a function of the data (e.g. ĥ is a random variable) and so the inequality
does not apply.

Note on Overfitting. Furthermore, while the set of cases where |LS(h) − LD(H)| >
√

ln(2/δ)
2m

may only have δ probability w.r.t. S ∼ Dm, they all add up and so given many {hi}Ki=1 ⊂
H,PS∼Dm [∃ i s.t. |LD(hi)−LS(hi)| is large] is not small. Thus, we want a stronger guarantee that
w.h.p all empirical errors LS(h) are close to their expected errors LD(h):

PS∼Dm [∀h ∈ H : |LS(h)− LD(h)| > ϵ] ≤ . . . (1.13)

This is known as uniform convergence.

1.4 Uniform Convergence & the Probably Approximately Correct
(PAC) Framework (Lecture 2)

We start by giving our first attempt at a uniform convergence bound:

Theorem 1.4 (Hoeffding-derived Uniform Convergence Bound for finiteH). For a finite hypothesis
class |H| < ∞, we have the following uniform convergence bound from the a priori Hoeffding bound:

PS∼Dm [∃h ∈ H : |LD(h)− LS(h)| > ϵ] ≤ |H| · PS∼Dm [|LD(h)− LS(h)| > ϵ] = 2|H| exp(−2ϵ2m)
(1.14)

Defining δ := 2|H| exp(−2ϵ2m) and solving for m, we arrive at the data-form of this bound:

Theorem 1.5 (Theorem 1.5 for fixed (ϵ, δ)). For any finite hypothesis clas |H| < ∞, any distri-
bution D, any (ϵ, δ) ∈ (0, 1)2 we have:

PS∼Dm [∀h ∈ H : |LS(h)− LD(h)| ≤ ϵ] ≥ 1− δ (1.15)

where m(ϵ, δ) = ln |H|+ln(2/δ)
2ϵ2

.

Note here that in contrast to our CLR bound Theorem 1.2, we will require 1
ϵ2

samples as opposed
to 1

ϵ . So removing the realizability assumption means that we will need more samples. Omar notes
that we will explore a relaxed realizability assumption that leads to m = O(1ϵ) in our homework.

From these bounds, we can create some ERM-specific bounds:

5

Theorem 1.6 (ERM “Post-hoc” Guarantee for finite H). For any finite class H, any distribution
D, any δ ∈ (0, 1),m ∈ N, with probability ≥ 1− δ over S ∼ Dm, we have:

LD(ERMH(S)) ≤ LS(ERMH(S)) +

√
ln |H|+ ln(2/δ)

2m
(1.16)

Proof. We can invoke Theorem 1.5 with ϵ =

√
ln |H|+ln(2/δ)

2m to have ≥ 1 − δ probability that

∀h ∈ H : |LD(h) − LS(h)| ≤ ϵ. But ERMH(S) ∈ H =⇒ LD(ERMH(S)) ≤ LS(ERMH(S)) + ϵ
with ≥ 1− δ probability. So we are finished.

Theorem 1.7 (ERM “A-Priori” Guarantee for finite H). For any finite class H, any distribution
D, any δ ∈ (0, 1),m ∈ N, with probability ≥ 1− δ over S ∼ Dm,

LD(ERMH(S)) ≤ min
h∈H

LD(h) + 2

√
ln |H|+ ln(2/δ)

2m
(1.17)

Proof. Note that by definition of ERM, ∀ h̃ ∈ H,LS(ERMH(S)) ≤ LS(h̃). Furthermore, ∀ h̃ ∈ H :
LS(h̃) ≤ LD(h̃) + ϵ with ≥ 1− δ probability. So with ≥ 1− δ probability we have:

∀ h̃ ∈ H,LD(ERMH(S)) ≤ LS(ERMH(S))︸ ︷︷ ︸
see proof of Theorem 1.6

+ϵ ≤ LS(h̃) + ϵ ≤ LD(h̃) + 2ϵ

We apply minh̃ to both sides of this inequality to arrive at the theorem.

Before moving forward, we point out the following concepts of approximation and estimation
error shown in Theorem 1.7.

• The approximation error minh∈H LD(h) reduces with richer/larger hypothesis classes H

• However, these expanded hypothesis classes will demand more samples in order to maintain

the same estimation error 2

√
ln |H|+ln(2/δ)

2m

We now move onto formally defining Probability Approximately Correct (PAC) learning,
which Omar notes won a Turing Award. We provide the following two definitions:

Definition 1.8 (Realizably-PAC-Learnable Hypothesis Class). A hypothesis class H is realizably-
PAC-learnable if there exists a learning rule A s.t. ∀(ϵ, δ) ∈ (0, 1)2,∃ m(ϵ, δ) ∈ N, ∀ distributions
D s.t. infh∈H LD(h) = 0,

PS∼Dm(ϵ,δ) [LD(A(S)) ≤ ϵ] ≥ 1− δ (1.18)

Note that this type of PAC-learnable hypothesis class is distribution independent, meaning the
bound applies for any data distribution D that is realizable (i.e. infh∈H LD(h) = 0). Dropping the
realizability assumption for H, we provide another PAC definition for a hypothesis class:

Definition 1.9 (Agnostically-PAC-learnable Hypothesis Class). A hypothesis class H is agnostically-
PAC-learnable if there exists a learning rule A such that ∀(ϵ, δ) ∈ (0, 1)2,∃ m(ϵ, δ) ∈ N, ∀ distribu-
tions D,

PS∼Dm(ϵ,δ){LD(A(S)) ≤ inf
h∈H

LD(h) + ϵ} ≥ 1− δ (1.19)

6

Looking at Definition 1.8 and Theorem 1.2, we get the following corollary.

Corollary 1.10 (Finite classes H are realizably-PAC-learnable with CLR.). All finite classes H
are realizably-PAC-learnable using CLR with sample complexity

m(ϵ, δ) =
ln |H|+ ln(1/δ)

ϵ

Similarly looking at Definition 1.9 and Theorem 1.7, we arrive at the following corollary:

Corollary 1.11 (Finite classes H are agnostically-PAC-learnable with ERM). All finite classes H
are agnostically-PAC-learnable using ERM with sample complexity

m(ϵ, δ) = O

(
ln |H|+ ln(1/δ)

ϵ

)
So we have established that all finite hypothesis classes are realizably and agnostically PAC-

learnable. Now what about infinite classes? And can we learn with less samples than log-cardinality
(i.e. m(ϵ, δ) ≪ ln |H|)? The answer is yes, and we now begin our study of the legendary VC
Dimension.

1.5 Vapnik-Chervonenkis (VC) Dimension (Lecture 2)

We first start by developing some technology of the growth function. For C = (x1, . . . , xm) ∈ Xm,
define the restriction (or projection) of H onto C as:

H|C = {(h(x1), . . . , h(xm)) | h ∈ H} (1.20)

We can then define the growth function as ΓH(m) = maxC∈Xm |H|C |. We look at a few examples
to understand how this growth function works:

• X = {1, . . . , 100}, H = {±1}X . Then we have ΓH(m) = min(2m, 2100).

• X = {1, . . . , 2100}, H = {1[x ≤ θ] | θ ∈ {1, . . . , 2100}} will have ΓH(m) = min(m+ 1, 2100)

The idea for both these two examples is that when two of the data points are the same (i.e.
m > |X|), they must be labeled identically and so the growth function hits a limit. Moreover,
we should observe that both function classes in these examples have the same cardinality but that
the growth function ΓH(m) can distinguish between them (H is a lot more complex in the first
example, and hence has the higher growth function.) As a teaser for future results, the growth
function gives us the following result which we will later prove:

Theorem 1.12. (Growth Function Data Bound for Realizable Distribution)
For any hypothesis class H, any (realizable) distribution D, any (ϵ, δ) ∈ (0, 1)2 with sample

complexity:

m(ϵ, δ) = O

(
ln[Γh(2m)] + ln(1/δ)

ϵ

)
(1.21)

with probability ≥ 1− δ over S ∼ Dm(ϵ,δ) we have that ∀h ∈ H : LS(h) = 0 =⇒ LD(h) ≤ ϵ.

7

We also have a similar theorem in the case that D is not realizable, where m(ϵ, δ) ∝ 1
ϵ2
:

Theorem 1.13. (Growth Function Data Bound for any Distribution)
For any hypothesis class H, any distribution D, any (ϵ, δ) ∈ (0, 1)2 with sample complexity:

m(ϵ, δ) = O

(
ln[Γh(2m)] + ln(1/δ)

ϵ2

)
(1.22)

with probability ≥ 1− δ over S ∼ Dm(ϵ,δ) we have that ∀h ∈ H : |LD(h)− LS(h)| ≤ ϵ.

The main thing to notice here is that we are no longer having our sample complexity m(ϵ, δ)
tied to ln |H|. So now we do not require our bounds to be finite, and can work with infinite function
classes!

Vapnik-Chervonenkis (VC) Dimension. Using the technology we have so far, we are ready
to define the VC dimension. We say C = {x1, . . . , xm} is shattered by H if |H|C | = 2m, i.e. the
projection contains all 2m possible labelings. The VC-dimension of H, denoted by vc(H) is the
largest number of points that can be shattered by H:

vc(H) = max{m ∈ N : ΓH(m) = 2m} (1.23)

We say vc(H) is infinite if H is infinite4 and ∀m,ΓH(m) = 2m. We now practice in class with
a few examples of the VC Dimension:

• X = {1, . . . , 100}, H = {±1}X .

• X = {1, . . . , 2100}, H = {1[x ≤ θ] | θ ∈ {1, . . . , 2100}}.

• X = R, H = {1[x ≤ θ] | θ ∈ R}.

• X = R, H = {1[a ≤ x ≤ b] | a, b ∈ R}.

• Axis-aligned rectangles5 (in Rd).

Note that in order to show that the vc(H) = k, we must show that we can shatter some set of
k points but no set of k + 1 points.

We now transition from introducing the VC dimension to beginning a long journey to proving
hypothesis classes with finite VC dimension are PAC-learnable.

1.6 PAC-Learnability of Hypothesis Classes with Finite VC Di-
mension (Lecture 3)

We begin with an extremely famous lemma used to bound the growth function:

4If H is finite, vc(H) ≤ log2 |H| as ΓH(m) ≤ |H| (see definition.)
5SPOILER: Answer is four. Any set of five points will have an “interior point” in the convex hull and so you

cannot make all boundary points be class one but the interior point be class zero.

8

Lemma 1.14. (Sauer-Shelah-Perles Lemma) If vc(H) = d, then for all m:

ΓH(m) ≤
d∑

i=0

(
m

i

)
(1.24)

In particular, when m > d, we have ΓH(m) ≤ (em/d)d = O(md).

Note that when m ≤ d,ΓH(m) = 2m, which is expected by definition of the VC dimension d.
The second part of the lemma, the case in which m > d, helps us gain more information on the
growth function beyond just the fact that it is < 2m. More specifically, we see that the number of
“behaviors” (i.e. |H|C |) is on the order of md for m > d, meaning it shifts from exponential growth
(i.e. 2m for m ≤ d) to polynomial (i.e. md for m ≥ d)6. We will prove this lemma by actually
proving the following stronger statement:

Lemma 1.15. (Pajor’s 1985 Refinement of Sauer-Shelah-Perles Lemma) If vc(H) = d, then for
all C ∈ Xm we have:

|H|C | ≤ |{B ⊆ C : H shatters B}| (1.25)

Note that given this refinement is true, then the fact7 |{B ⊆ C : H shatters B}| ≤
∑d

i=0

(
m
i

)
implies Lemma 1.14. So we now prove Lemma 1.15.

Proof. We prove this with induction. We start with our base case, when m = 1 and C = {x1}.
Then |H|C | = 1 if all h ∈ H classify x1 the same and so only ∅ ∈ {B ⊆ C : H shatters B} as x1 is
not shattered. If |H|C | = 2, then {x1} is shattered and so {B ⊆ C : H shatters B} = {∅, {x1}}. So
in both cases, we have a strict equality. Thus the base case is satisfied. We now proceed with the
inductive step, assuming that this inequality holds for all k < m, and we WTS it holds for m. We
start by defining C = {x1, . . . , xm} ∈ Xm and C ′ = {x2, . . . , xm}, which is just C with x1 removed.
Now consider:

A = {(y2, . . . , ym) : (+1, y2, . . . , ym) ∈ H|C or (−1, y2, . . . , ym) ∈ H|C}

and

B = {(y2, . . . , ym) : (+1, y2, . . . , ym) ∈ H|C and (−1, y2, . . . , ym) ∈ H|C}

Then first note that each element in A/B contributes only one labeling to H|C whereas each
element in B contributes two labelings to H|C . Thus, |H|C | = |A/B| + 2|B| = |A| + |B|. Also
observe that A = H|C′ as A ⊆ H|C′ by construction and every (y2, . . . , ym) labeling in H|C′ is in
A. By our induction hypothesis, it holds that:

|A| = |H|C′ | ≤ |{S ⊆ C ′ : H shatters S}| = |{S ⊆ C : x1 /∈ S and H shatters S}|

We can then define H ′ ⊆ H as the set of all functions with a “twin” for labeling x1:

6Omar notes that this is what makes learning possible. This statement should make more sense by the end of this
lecture.

7This inequality is true because
∑d

i=0

(
m
i

)
gives the number of subsets of valid shatterable size (i.e. 1, . . . , d) of m

points, which in our case is C.

9

H ′ = {h ∈ H : ∃ h′ ∈ H s.t. h′(x1) = 1− h(x1) and ∀i ∈ [2,m], h′(xi) = h(xi)}

Quite elegantly, we have B = H ′|C′ as it is the labelings of C ′ generated from only those func-
tions in H ′ which would produce both labels on x1 ∈ C (i.e. the set of functions H ′). Furthermore,
note that if H ′ shatters any subset of C ′, that means it could shatter that subset and x1. So we
apply our induction hypothesis once more:

|B| = |H ′|C′ | ≤ |{S ⊆ C ′ : H ′ shatters S}| = |{S ⊆ C ′ : H ′ shatters S ∪ {x1}}|
= |{S ⊆ C : x1 ∈ S and H ′ shatters S}| ≤ |{S ⊆ C : x1 ∈ S and H shatters S}|

We can combine the above two inequalities for |A| and |B| to arrive at:

|H|C | = |A|+ |B| ≤ |{S ⊆ C : x1 /∈ S and H shatters S}|+ |{S ⊆ C : x1 ∈ S and H shatters S}|
= |{S ⊆ C : H shatters S}|

which finishes the proof.

So applying the Sauer-Shelah-Perles lemma (for when m > d) to (1) the growth function sample
complexity bound for realizable distributions stated in Theorem 1.12 and (2) the distribution-
agnostic growth function sample complexity bound stated in Theorem 1.13 , we arrive at the
following corollary:

Corollary 1.16. (Infinite Hypothesis Classes with finite VC Dimension are PAC-learnable.) Any
hypothesis class H with finite VC dimension is:

1. Realizably-PAC-learnable using ERM with sample complexity:

m(ϵ, δ) = O

(
vc(H) ln(1/ϵ) + ln(1/δ)

ϵ

)
(1.26)

2. Agnostically-PAC-learnable using ERM with sample complexity:

m(ϵ, δ) = O

(
vc(H) + ln(1/δ)

ϵ2

)
(1.27)

This is a big result in statistical learning theory. The realizable sample complexity bound above
was derived from Theorem 1.12, so now is probably a good time to actually prove Theorem 1.12.
We will not prove the agnostic case bound in Theorem 1.13 as it is similar. We restate the theorem
below (boxed), in the version we want to prove, before starting its (long) proof8:

PS∼Dm [∀h ∈ H : LS(h) = 0 =⇒ LD(h) ≤ 2
ln[ΓH(2m)] + ln(2/δ)

m
] ≥ 1− δ (1.28)

8Omar presented a brief primer on the Chernoff concentration inequality before starting this proof, which might
be helpful.

10

Proof. We first define ϵ = 2 ln[ΓH(2m)]+ln(2/δ)
m . Given a set S = {(xi, yi)}mi=1 of m examples, define

the event

AS = {∃h ∈ H : LD(h) > ϵ ∧ LS(h) = 0}

Our goal is to show that PS∼Dm [AS] ≤ ϵ. Now let us consider drawing two sets S, S′ of m
examples each. We can define the event:

BS,S′ = {∃ h ∈ H : LS′(h) >
ϵ

2
∧ LS(h) = 0}

Now note that PS,S′∼Dm [BS,S′] is ≥ 1
2PS∼Dm [AS]. The reason for this is that PS,S′∼Dm [BS,S′] =

PS∼Dm [AS] · PS,S′∼Dm [BS,S′ | AS] and PS,S′∼Dm [BS,S′ | AS] ≥ 1
2 by a Chernoff bound as long as

m > 8/ϵ. Thus, given this fact note PS′,S∼Dm [BS,S′] ≤ δ
2 implies our goal.

Now consider another experiment where we draw a fixed set S′′ of 2m examples, and then
(randomly) partition S′′ into two sets S, S′ each of cardinality m. Now define another event:

CS′′,S′,S = {∃h ∈ H : LS′(h) >
ϵ

2
∧ LS(h) = 0}

It should be intuitive to see that PS′′∼D2m [CS′′,S′,S′] = PS,S′∼Dm [BS,S′] and so it suffices to
show PS′′∼D2m [CS′′,S′,S′] ≤ δ/2. Note that for a fixed S′′, this is equivalent to showing that
PS,S′∼Dm [CS′′,S′,S] ≤ δ/2. To do so consider the following:

1. With S′′ fixed, we only need to consider the projection of H onto the x’s (i.e. datapoints)
that appear in S′′. So there are at most ΓH(2m) labelings we need to consider, as ΓH(2m) is
the maximum number of labelings for any set of 2m datapoints, such as S′′.

2. For each such labeling, we need to show that the probability of being perfect on S but have
error ≥ ϵ/2 on S′ is low. We will then union bound.

We proceed by fixing a labeling h ∈ H|S′′ . We can assume that h makes at least ϵm
2 mistakes on

S′′, as otherwise PS′′∼D2m [CS′′,S′,S′] = 0 ≤ δ/2 and so our proof is finished. Now when we randomly
split S′′ into S and S′, what is the chance that all these mistakes land in S? Consider the following
analogy. We can partition S′′ by randomly pairing the points together (a1, b1), . . . , (am, bm). Then,
for each pair (ai, bi) we can flip a coin where (i) heads mean ai goes to S and bi goes to S′ and (ii)
tails mean vice versa. Observe that if there is any pair (ai, bi) in which h makes a mistake on both
of them then the chance that all htese mistakes land in S is zero. Otherwise, the probability that
all mistakes land in S is at most (12)

ϵm/2, as there is a 50% chance of each of the ≥ ϵm
2 mistakes

landing in S based on this coin flip procedure.
Because this was for an arbitrary labeling, we apply a union bound over all possible labelings

in H|S′′ :

PS′′∼D2m [CS′′,S′,S] ≤ ΓH(2m) · 2−ϵm/2

and so to conclude the proof just solve for m(ϵ, δ) s.t. ΓH(2m) · 2−ϵm/2 ≤ δ/2.

Continuing forward with our exploration, we are interested in the following questions:

1. Are there classes with infinite VC dimension that are PAC-learnable?

11

2. Can we learn with fewer samples than VC dimension?

3. Are there any hypothesis classes that are not PAC-learnable?

We now tackle the first question through the statistical no-free-lunch (NFL) theorem, which
shows that no hypothesis class with infinite VC dimension is PAC-learnable.

Theorem 1.17 (Statistical No Free Lunch). For any hypothesis class H, any learning rule A, and
any ϵ < 1/4, there exists a (realizable) distribution D such that if

m <
vc(H)− 1

8ϵ
(1.29)

then

ES∼Dm [LD(A(S))] ≥ ϵ (1.30)

Note that this gives us a VC-dimension based lower bound on the required sample complexity
m(ϵ, δ) for ES∼Dm [LD(A(S))] < ϵ. Thus, this means m(ϵ, δ) is bounded both above (i.e. Corol-
lary 1.16) and below by something ∝ vc(H), or, equivalently, that our sample complexity bounds
in Corollary 1.16 should really be of the Θ(. . .) kind as opposed to O(. . .).

Proof. Pick d = vc(H) shatterable points x1, . . . , xd. Then define discrete distribution P with
probability mass 1 − 4ϵ on x1 and mass 4ϵ

d−1 on all other points. Now because these d points are

shatterable =⇒ we have 2d behaviors from H =⇒ we have 2d possible target functions. Now
pick a random labeling from the 2d possible target functions. Then from definition of LD we have:

ES∼Dm [LD(A(S))] = P[mistake on some test point] ≥ 1

2
P[test point /∈ S]

where the last inequality is because P[mistake on test point] = P[test point /∈ S ∧mistake on test point]
and P[mistake on test point] ≥ 0.5 as we have given this test point a randomly chosen label (you
can’t predict better than 50%). Continuing forward we have:

P[test point /∈ S] ≥
d∑

i=2

P[test point is xi ∧ xi /∈ S] =
d∑

i=2

P[test point is xi] · P[test point /∈ S | test point is xi]

=
d∑

i=2

4ϵ

d− 1
· (1− 4ϵ

d− 1
)m = 4ϵ(1− 4ϵ

d− 1
)m ≥ 4ϵ(1− 4mϵ

d− 1
) ≥ 4ϵ(1− 1

2
) = 2ϵ

The first inequality comes from the fact we are not considering the case in which the test point
is x1. Furthermore, note the use of Bernoulli’s inequality in the penultimate inequality and our
assumed bound on m in the last inequality. From this, we have ES∼Dm [LD(A(S))] ≥ ϵ.

So we can present the following theorem, which is a restatement of all we have shown so far:

Theorem 1.18 (Fundamental Theorem of Statistical Learning). For any hypothesis class H with
finite VC dimension d = vc(H) and any ε, δ ∈ (0, 1):

12

• H is (realizably)-PAC-learnable with sample complexity:

m(ε, δ) = Θ

(
d+ ln(1/δ)

ε

)
.

• H is (agnostically)-PAC-learnable with sample complexity:

m(ε, δ) = Θ

(
d+ ln(1/δ)

ε2

)
,

• H satisfies uniform convergence with sample complexity:

m(ε, δ) = Θ

(
d+ ln(1/δ)

ε2

)
.

We will next time start with understanding what it means for something to be efficiently PAC-
learnable.

13

Chapter 2

Computational Aspects of PAC
Learning

2.1 Efficient PAC Learnability (Lecture 4 & 5)

We give the following first attempt at defining what it could mean for a hypothesis class to be
efficiently PAC learnable:

Definition 2.1 (Efficiently PAC-Learnable Definition Attempt). A hypothesis class H is efficiently-
realizably-PAC-learnable if there exists a poly-time computable learning rule A such that ∀(ϵ, δ) ∈
(0, 1)2,∃ m(ϵ, δ) ∈ N where ∀D s.t. infh∈H LD(h) = 0 we have:

PS∼Dm(ϵ,δ) [LD(A(S)) ≤ ϵ] ≥ 1− δ (2.1)

The natural question here is what the runtime is polynomial in? Is A(S) polynomial in the
dataset size |S|? But this is a “cheatable” definition, as if the runtime of A is ∝ 2|S| we can simply
just draw m′(ϵ, δ) := 2m(ϵ,δ) many samples but have A only use log2m

′(ϵ, δ) of them. So the runtime
of A appears to be ∝ m′(ϵ, δ) = |S| now. Or do we mean the runtime should be polynomial in ϵ−1

or δ−1? What we decide that we really want is that the runtime of A should be polynomial in “the
size of the problem”, which we will be clear shortly.

To understand this, we will start by studying a family of hypotheses classes {Hn}n∈N over
{Xn}n∈N. Usually Xn grows with n, such as Xn = {0, 1}n or Xn = Rn, but sometimes Xn is
fixed (e.g. Xn = Rd). Note that regardless, we are using binary labels Y = {±1}. With this
construction, we can give a more precise definition of efficiently PAC-learnable:

Definition 2.2 (Efficiently PAC-Learnable over hypothesis class family). A family {Hn}n is
efficiently-realizably-PAC-learnable if there exists a learning rule A such that ∀n, ∀(ϵ, δ) ∈ (0, 1)2,
∃m(ϵ, δ) ∈ N where ∀D s.t. infh∈H LD(h) = 0 we have:

PS∼Dm(ϵ,δ) [LD(A(S)) ≤ ϵ] ≥ 1− δ (2.2)

and A can be computed in runtime poly(n, 1/ϵ, log[1/δ]).

The first thing we should notice is that this definition clearly necessitates A to scale polynomi-
ally with the problem complexity (i.e. n, 1/ϵ, log[1/δ] are all proportional to the difficulty of the

14

problem.) Another thing is that because A’s runtime is bounded below by the number of samples,
if {Hn}n is efficiently PAC-learnable =⇒ m(ϵ, δ) ≤ poly(n, 1/ϵ, log[1/δ]).

We now consider another perspective. Rather than thinking about our algorithm A as taking
samples S, imagine our algorithm has access to an O(1) sampling oracle of our data distribution D.
In math, we think of this as A(D, ϵ, δ) where A can sample from D in unit time using this “oracle.”
Taking this perspective, m(ϵ, δ) is then the number of times A has to use this oracle to arrive at
≤ ϵ expected risk with ≥ 1− δ confidence. With this perspective, we see that there is still room in
Definition 2.2 for multiple views on what A’s output should be:

• View 1: A(·) outputs a program1 that maps Xn → Y that will run in poly(n, 1/ϵ, log[1/δ]).

• View 2: A(S, x) or A(D, ϵ, δ, x) will output prediction y = h(x).

• View 3: A(·) outputs a description of h ∈ H (e.g. a decision tree.) Formally speaking, we
assume A outputs w ∈ {0, 1}⋆ with description length |w| ≤ poly(n, 1/ϵ, log[1/δ]) where there
exists a poly-time algorithm B(w, x) 7→ hw(x).

So the kinds of things we are looking at when talking about an efficiently PAC-learnable algo-
rithm A are its runtime to produce a function/program, the runtime of this program, and/or the
description length of this program.

You might be wondering what hypotheses classes will satisfy Definition 2.2, meaning that they
are efficiently PAC learnable. For now, we will worry about the case in which the hypothesis class
is realizable. To start, Omar notes that halfspaces are efficiently PAC-learnable, which can be
shown through convex/linear optimization. If we consider polynomials as nonlinear feature maps,
then through a “degree-lift” of the halfspaces, we can show that polynomials are efficiently PAC
learnable. We finish this discussion by focusing on the family of conjunction hypothesis classes,
which we introduce now2:

Xn = {0, 1}n, Hn = CONJn = {x 7→ (∧j∈Jx(j)) ∧ (∧i∈I x̄(i)) | J, I ⊆ [n]}, Yn = {±1}

So for a fixed n, our instance space is a binary string of length n and our hypothesis class is
an AND (i.e. ∧) of ANDs over indices I and ANDs over indices J . As an example, we could have
h(x) = x(5) ∧ x(12) ∧ x̄(7) ∈ Hn. A natural question then is what the VC dimension of Hn is. For
this, note that the size of Hn is 3n and so3:

vc(Hn) ≤ log |Hn| = log(3n) = O(n)

As per our VC realizable data bound Theorem 1.12, this means that we can learn with m(ϵ, δ) =

O(n+log(1/δ)
ϵ) samples. We now show that we can efficiently learn on this task through the following

O(mn) algorithm:

• We take input S = {(xi, yi)}mi=1 of m samples

1The word “program” is defined here through the Turing Machine terminology.
2Notation: x̄ := 1− x, and x(i) ∈ {0, 1} gives the ith index x ∈ Xn = {0, 1}n.
3The reason |Hn| = 3n is that for each index i ∈ [1, n], when constructing some function h ∈ Hn we have three

options: (1) include x(i) in h, (2) include x̄(i) ∈ h, (3) neither do (1) nor (2). Note that doing both (1) and (2) will
lead to h = 0, and hence it is not an option.

15

• We first initialize4 h = ∧n
i=1[x(i) ∧ x̄(i)] ∈ Hn

• Now for the ith sample, we check if yi = 1. If so then for 1 ≤ j ≤ n:

– Define xi to be the ith sample. If xi(j) = 1, we will remove x̄(j) from h as its presence
causes h(x) = 0 ̸= yi = 1.

– Similarly if xi(j) = 0, we will remove x(j) from h.

Note that this algorithm after running will result in an h ∈ Hn with LS(h) = 0. This should
remind us of a type of algorithm we have looked at before – a consistent learning rule (Definition 1.1)!
Observe that in showing that hypothesis class CONJn is efficiently PAC learnable, we have used
the following recipe:

Theorem 2.3 (CLR Recipe to conclude that something is efficiently PAC-learnable). If vc(Hn) ≤
poly(n) and there is a poly-time algorithm implementing the CLR for {Hn}n, then we have that
{Hn}n is efficiently-PAC-learnable.

Proof. If vc(Hn) ≤ poly(n) =⇒ m(ϵ, δ) ≤ poly(n). Furthermore, the runtime of the CLR in
this case (which will by definition will satisfy all ≤ ϵ,≥ 1 − δ constraints) is ≤ poly(n). So our
algorithm will take ≤ poly(n) to read all samples and ≤ poly(n) to give the CLR-learned function
=⇒ the algorithm satisfies all efficient PAC-learnable constraints in ≤ poly(n) time =⇒ {Hn}n
is efficiently PAC-learnable.

But perhaps the converse question is more interesting:

If ∀n,Hn is efficiently-PAC-learnable =⇒ is there a poly-time CLR for Hn?

We will return to this question later. We move onto considering a more complex 3-Term DNF
function class Hn:

Hn = {T1 ∨ T2 ∨ T3|T1, T2, T3 ∈ CONJn} (2.3)

As an example of a function in this hypothesis class:

h(x) = (x1 ∧ x2 ∧ x3) ∨ (x̄4 ∧ x̄5 ∧ x̄6) ∨ (x7 ∧ x8 ∧ x9 ∧ x̄10) ∈ Hn

We once again have:

vc(Hn) ≤ log |Hn| ≤ log[(3n)3]

So we can learn this problem with poly(n, 1/ϵ, log[1/δ]) samples. But can we do so efficiently?
We start with the claim that finding a consistent hypothesis in Hn is NP-hard5. Thus, assuming
that P ̸= NP, this means that there is no polynomial time algorithm for deciding6 if there is a CLR
on Hn. Keeping this thought in mind, we introduce efficient proper PAC-learning:

4Note that this is just taking I = J = [n].
5Omar gives a very involved proof in the slides, which reduces the problem to the problem of graph 3-colorability,

which is NP-complete.
6Recall that if finding something is NP-hard, then the corresponding decision task will necessarily also be NP-hard.

16

Definition 2.4 (Efficiently Properly PAC-Learnable Hypothesis Class Family {Hn}n). A family
{Hn}n is efficiently-properly-PAC-learnable if there exists a learning rule A such that ∀n, ∀(ϵ, δ) ∈
(0, 1)2,∃ m(ϵ, δ) ∈ N where ∀D s.t. infh∈H LD(h) = 0 we have:

PS∼Dm(ϵ,δ) [LD(A(S)) ≤ ϵ] ≥ 1− δ (2.4)

where A can be computed in time poly(n, 1/ϵ, log[1/δ]), and A always outputs a predictor in Hn.

We will now take a look at the algorithmic hardness of proper learning on any hypothesis class
family. We start with the decision task of seeing if a consistent hypothesis on a given dataset.

Hardness of Proper Learning. For a family {Hn}n consider the following decision problem:

CONSHn(S) = 1 ⇐⇒ ∃ h ∈ Hn s.t. LS(h) = 0

We present the following theorem:

Theorem 2.5. If Hn over Xn = {0, 1}n is efficiently-properly-PAC-learnable then CONSHn(S) ∈
RP.

In words, we are saying that if any arbitrary Hn over our binary string instance space Xn is
efficiently-properly-PAC-learnable, then there exists a (randomized) algorithm B with polynomial
runtime in n where for any input dataset S we have:

P[B(S) = 1 | CONSHn(S) = 1] ≥ 7

8
>

1

2
, and P[B(S) = 0 | CONSHn(S) = 0] = 1

Proof. Let A be an efficient-proper-PAC-learning algorithm for Hn. Now consider the following
algorithm B upon receiving input S:

1. Define ĥ := A(D, ϵ, δ) ∈ Hn, where D = Unif(S), ϵ = 1
2|S| , δ = 1

8 . Such choice for D means

LD(ĥ) = LS(ĥ).

2. Check if LS(ĥ) = 0 by evaluating ĥ on all (x, y) ∈ S.

3. Return 1(LS(ĥ)=0).

Time to analyze this algorithm B! First note if CONSHn(S) = 0 =⇒ B outputs 0 (since in this
case ∀h ∈ Hn, LS(h) > 0). Now assume CONSHn(S) = 1. Then with probability ≥ 1 − δ = 7/8,
LD(ĥ) = LS(ĥ) ≤ ϵ ≤ 1

2|S| . But LS(ĥ) cannot be nonzero and smaller than 1
|S| =⇒ LS(ĥ) = 0. In

this case, B would return 1.
Note that because A is an efficient-proper-PAC-learning algorithm, the runtime of B (our ran-

domized algorithm to solve CONSHn(S)) is polynomial in n and 1
ϵ ∼ |S|. Thus CONSHn(S) ∈

RP.

So switching back to our example where Hn is a 3-term DNF, we have proved the following
corollary:

Corollary 2.6. If RP ̸= NP, then Hn (3-term DNF) is not efficiently properly PAC-learnable.

17

Proof. BWOC, if Hn (3-term-DNF) is efficiently properly PAC-learnable =⇒ CONSHn(S) ∈
RP =⇒ 3COLOR ∈ RP =⇒ RP = NP, which is a contradiction.

Now assuming RP ̸= NP, we restate Theorem 2.3 and Theorem 2.5 for any arbitrary family
{Hn}n:

1. If vc(Hn) ≤ poly(n) and there is a poly-time algorithm implementing consistent learning
=⇒ Hn is efficiently-properly-PAC-learnable.

2. If solving CONSHn(S) is NP-hard =⇒ the family {Hn}n is not efficiently-properly-PAC-
learnable.

What about improper learning algorithms, where we allow the algorithm to output something
outside the hypothesis class? Furthermore, if a family Hn is efficiently-properly-PAC-learnable,
what can we say about H̃n ⊂ Hn? Is H̃n efficiently-properly-PAC learnable? We continue this
exploration further with our same 3-term DNF Hn family. Recall:

Hn = {T1 ∨ T2 ∨ T3|T1, T2, T3 ∈ CONJn}

Note that for an example function in this class:

h(x) = (x1 ∧ x2 ∧ x3) ∨ (x̄4 ∧ x̄5 ∧ x̄6) ∨ (x7 ∧ x8 ∧ x9 ∧ x̄10).

can also be represented as:

h(x) = (x1 ∨ x̄4 ∨ x7) ∧ (x1 ∨ x̄4 ∨ x8) ∧ (x1 ∨ x̄4 ∨ x9) ∧ (x1 ∨ x̄4 ∨ x̄10)

∧ (x1 ∨ x̄5 ∨ x7) ∧ (x1 ∨ x̄5 ∨ x8) ∧ (x1 ∨ x̄5 ∨ x9) ∧ (x1 ∨ x̄5 ∨ x̄10)

∧ (x1 ∨ x̄6 ∨ x7) ∧ (x1 ∨ x̄6 ∨ x8) ∧ (x1 ∨ x̄6 ∨ x9) ∧ (x1 ∨ x̄6 ∨ x̄10)

∧ (x2 ∨ x̄4 ∨ x7) ∧ (x2 ∨ x̄4 ∨ x8) ∧ (x2 ∨ x̄4 ∨ x9) ∧ (x2 ∨ x̄4 ∨ x̄10)

∧ (x2 ∨ x̄5 ∨ x7) ∧ (x2 ∨ x̄5 ∨ x8) ∧ (x2 ∨ x̄5 ∨ x9) ∧ (x2 ∨ x̄5 ∨ x̄10)

∧ (x2 ∨ x̄6 ∨ x7) ∧ (x2 ∨ x̄6 ∨ x8) ∧ (x2 ∨ x̄6 ∨ x9) ∧ (x2 ∨ x̄6 ∨ x̄10)

∧ (x3 ∨ x̄4 ∨ x7) ∧ (x3 ∨ x̄4 ∨ x8) ∧ (x3 ∨ x̄4 ∨ x9) ∧ (x3 ∨ x̄4 ∨ x̄10)

∧ (x3 ∨ x̄5 ∨ x7) ∧ (x3 ∨ x̄5 ∨ x8) ∧ (x3 ∨ x̄5 ∨ x9) ∧ (x3 ∨ x̄5 ∨ x̄10)

∧ (x3 ∨ x̄6 ∨ x7) ∧ (x3 ∨ x̄6 ∨ x8) ∧ (x3 ∨ x̄6 ∨ x9) ∧ (x3 ∨ x̄6 ∨ x̄10)

So based on this representation, we are making the following claim:

3-term DNFn ⊂ 3CNFn = {∧r
i=1Li | Li is a disjunction of 3 variables, and r ∈ N}

We now make a second claim, that 3CNFn is efficiently-properly-PAC-learnable. Our reasoning
for this is as follows:

• There are (2n)3 possible disjunctions of 3 variables (i.e. the number of Li’s, or r)

• Treat each of these as a single new variable in a lifted space. Similar to defining a feature
map: ϕ(x) = (x1 ∨ x2 ∨ x3, . . . , x̄n−2 ∨ x̄n−1 ∨ x̄n).

18

• We now run the algorithm for consistently solving conjunctions in the lifted space.

• We have O(n3) many variables in this lifted space and a sample complexity of O(n3/ϵ) (recall
the VC dimension on CONJn is n so sample complexity O(n/ϵ) required.) Thus the runtime
of using this algorithm is O(n3) ∗O(n3/ϵ) = O(n6/ϵ), which is polynomial in n and 1/ϵ.

This gives us the following corollary:

Corollary 2.7. 3-term DNFn is efficiently-improperly-PAC-learnable.

The reason for this is because we can learn any 3-term DNF consistently, except that we will
get a 3-term CNF, which is not necessarily a 3-term DNF. Furthermore, note that the cardinality
bound on the VC dimension gives us a theoretical sample complexity of O(n/ϵ) for the 3-term
DNFn. However, finding a consistent hypothesis in the 3-term DNFn family is NP-hard. But by
transforming 3-term DNFn into the 3-term CNFn family, we can find a consistent hypothesis but
with a larger sample complexity of O(n3/ϵ). This is a computational-statistical tradeoff : we have
to use more computation in order to achieve better statistical results.

We finally finish this lecture with a discussion of our previously posed Hn ⊆ H ′
n question:

• If Hn ⊆ H ′
n, then

– If H ′
n is efficiently-PAC-learnable,

∗ then Hn is efficiently-PAC-learnable.

– If Hn is not efficiently-PAC-learnable,

∗ then H ′
n is not efficiently-PAC-learnable.

– If Hn is not efficiently-properly-PAC-learnable,

∗ then H ′
n is ???.

As an ending question, we will want to consider if there are any hypotheses classes that are not
efficiently PAC-learnable, even improperly. If they do exist, how would we prove that they are not
efficiently PAC-learnable?

Hardness of Improper Learning. In general, to conclude that a family of hypotheses classes
is not efficiently-PAC-learnable (even improperly), we must show that this family can solve a
cryptographic problem that is assumed to be computationally intractable. For example, assuming
the cryptographic “Discrete Cube Root” is computationally intractable, then the class of log-
depth polynomial-size circuits (AND/OR networks) will not be efficiently-PAC-learnable as if it
was, it would imply that this cryptographic problem is tractable (which is a contradiction by our
assumption.)

We now move onto efficient-proper agnostic learning, where we do not assume distributions to be
realizable. We present the following definition, which is the agnostic counterpart to Definition 2.4:

Definition 2.8 (Efficiently Properly Agnostic PAC-Learnable family {Hn}n). A family {Hn}n
is efficiently-properly-PAC-learnable in agnostic setting if there exists a learning rule A such that
∀n,∀(ϵ, δ) ∈ (0, 1)2,∃ m(ϵ, δ) ∈ N where ∀D we have:

PS∼Dm(ϵ,δ) [LD(A(S)) ≤ inf
h∈Hn

LD(h) + ϵ] ≥ 1− δ (2.5)

where A can be computed in time poly(n, 1/ϵ, log[1/δ]), and A always outputs a predictor in Hn.

19

We now give the following computational conditions for efficient agnostic learning, which are of
an ERM-flavor compared to what we have seen before:

1. If vc(Hn) ≤ poly(n) and there is a poly-time algorithm implementing ERM for {Hn}n =⇒
{Hn}n is efficiently-agnostically-properly-PAC-learnable.

2. If Hn is efficiently-agnostically-properly-PAC-learnable then AGREEMENTHn(S) ∈ RP,
where AGREEMENTHn(S, k) is the following decision problem:

AGREEMENTHn(S, k) = 1 ⇐⇒ ∃ h ∈ Hn, LS(h) ≤ 1− k

|S|

3. (Contrapositive of above.) If RP ̸= NP and solving AGREEMENTHn(S) is NP-hard =⇒
the family {Hn}n is not efficiently-agnostically properly-PAC-learnable.

You might wonder which hypotheses classes are efficiently properly agnostic learnable:

• Poly-time functions? No, not even in the realizable case.

• Poly-size depth-2 neural networks? No, not even in the realizable case either.

• Halfspaces (linear predictors)? Note that in the realizable case, halfspaces are efficiently
PAC learnable but in the agnostic case, AGREEMENTHn is NP-hard =⇒ not efficiently-
agnostically PAC-learnable.

• Conjunctions? No (but efficiently PAC-learnable in the realizable setting as per Theorem 2.3)

• Unions of segments on the real line?

– Xn = [0, 1], Hn = {x 7→ ∨n
i=11[ai ≤ x ≤ bi] | ai, bi ∈ [0, 1]}

– Yes, efficiently properly agnostically PAC learnable.

As a preview of what’s to come, Omar notes that one way the community has bypassed these
computational hardness results is to design surrogate losses. For example, instead of using the
zero-one loss ℓ01(z, y) = 1[yz ≤ z] (which our classical risk LD and LS typically uses), we can
define losses which upper bound ℓ01. Examples:

• Squared Loss: ℓ(z, y) = (z − y)2

• Hinge Loss: ℓ(z, y) = max(0, 1− yz)

• Logistic Loss: ℓ(z, y) = log(1 + exp(−yz))

• Exponential Loss: ℓ(z, y) = exp(−yz)

As a closing for this chapter, we consider the following thoughtful question. If neural networks
& deep learning are not efficiently PAC-learnable, why do they perform so well, that too with
local search procedures such as Stochastic Gradient Descent (SGD)? This should naturally imply
that the problems7 where deep learning is thriving are not those worst case problems which will
determine if a hypothesis class is efficiently-PAC-learnable.

7“problems” here are broadly referring to the data distributions D.

20

Chapter 3

Non-Uniform Learning

3.1 Non-Uniform Learning over Countable Hypothesis Classes (Lec-
ture 5)

We now transition from PAC learning to the study of another learning paradigm of non-uniform
learning. Observe that hitherto, we have placed a uniform prior over H, where we are a priori
assuming each h ∈ H to be equally likely. Now imagine instead if we placed a prior p : H → [0, 1]
where

∑
h∈H p(h) ≤ 1.

Note that this is a general way for us to encode our prior knowledge of this problem. For
example, we may want to induce some sort of bias towards “simpler” functions, so p(h) will encode
“simplicity”. Or we may have a bias towards predictors with shorter explanations, so p(h) will
encode “description length”. As an aside, these principles are all at a high-level related to Occam’s
Razor.

Suppose we go with the latter option of having a bias for a shorter description. Furthermore,
we will assume that H is countable. We can then define a bit-descriptor function d : H → {0, 1}⋆,
which is essentially a description language for H that is prefix-free, meaning that ∀h, h′ ∈ H, d(h)
is not a prefix of d(h′). Then we can define our simplicity-biased prior, p(h) = 2−|d(h)|, where by
Kraft-McMillan’s Inequality we have1

∑
h∈H p(h) =

∑
h∈H 2−|d(h)| ≤ 1.

Now we are ready to consider the following learning rule of minimum description length (MDL):

MDLp(S) = argmaxLS(h)=0p(h) = argminLS(h)=0|d(h)|

Essentially MDL gives us the consistent hypothesis that is most aligned with our prior, or
equivalently has the shortest description length possible. We now present the following (realizable)
learning guarantee for MDL:

Theorem 3.1 (MDL Learning Guarantee). For prior p over a countable H s.t.
∑

h∈H p(h) ≤ 1

(e.g. p(h) = 2−|d(h)| for a prefix-free d), any δ ∈ (0, 1),m ∈ N, and any distribution D s.t. ∃ h∗ ∈ H
where LD(h

∗) = 0, with probability ≥ 1− δ over S ∼ Dm we have:

LD(MDLp(S)) ≤
ln(1

p(h∗)) + ln(1/δ)

m
=

ln(2) · |d(h∗)|+ ln(1/δ)

m
(3.1)

1Observe that our assumption that d is a prefix-free language enables us to use this inequality.

21

https://en.wikipedia.org/wiki/Occam's_razor
https://en.wikipedia.org/wiki/Occam's_razor
https://en.wikipedia.org/wiki/Kraft–McMillan_inequality

The main thing to notice here is that this MDL guarantee tells us that learning happens at an
inversely proportional speed to |d(h∗)|, or the length of the best predictor h∗.

Proof. For any h ∈ H where we have LD(h) > ϵh := ln(1/p(h))+ln(1/δ)
m , we will have:

PS∼Dm [LS(h) = 0] ≤ (1− ϵh)
m ≤ exp(−ehm) = p(h) · δ

This is using the same arguments in the derivation of our first ever learning guarantee Theo-
rem 1.2.

So now we apply a union bound to get:

PS∼Dm [∃h ∈ H : LD(h) > ϵh ∧ LS(h) = 0] ≤ Ph∈H [LS(h) = 0] ≤
∑
h∈H

p(h)δ ≤ δ

where inverting the probabilities yields the desired form. Finally, observe that this was for any
h ∈ H. Now set h = MDLp(S) and apply this bound. Because ∃ h∗ ∈ H s.t. LD(h

∗) = 0 =⇒
p(MDLp(S)) ≥ p(h∗) by definition of MDL. Thus we can loosen this upper bound by using p(h∗)
instead of p(h) = p(MDLp(S)). This arrives us to the desired conclusion.

Note that this is a very strong result, as it applies to countable hypothesis classes. Example
classes that are countable include:

• Class of all computable functions.

• Class numberable with n : H → N where we use p(h) = 2−n(h)

However, the VC dimension of all computable functions is infinite! So doesn’t this imply that
all computable functions are not PAC-learnable, as their required sample complexity m(ϵ, δ) would
be infinite2? The reason there is no contradiction is that from Theorem 3.1, we can see that
the sample complexity for MDL is given by m(ϵ, δ, h). While PAC-learnability requires a sample
complexity that works uniformly (no pun intended) across all h ∈ H, non-uniform-learnability as
we will soon see does not have this requirement. Note however that this does not always mean
learning is feasible in the non-uniform setting. For example, |d(h∗)| is very big =⇒ m(ϵ, δ, h)
would be large as the p(h∗) term would be very small.

We now present the definition of a hypothesis class being non-uniformly-learnable, which is
nearly identical to an agnostically-PAC-learnable hypothesis class (Definition 1.9):

Definition 3.2 (Non-uniformly Learnable Hypothesis Class). A hypothesis class H is non-uniformly-
learnable if there exists a learning rule A such that ∀(ϵ, δ) ∈ (0, 1)2,∀h ∈ H,∃ m(ϵ, δ, h) ∈ N where
∀D,

PS∼Dm(ϵ,δ){LD(A(S)) ≤ LD(h) + ϵ} ≥ 1− δ (3.2)

From this, we arrive at a corollary for MDL’s sample complexity:

2See Fundamental Theory of Statistical Learning, Theorem 1.18.

22

Corollary 3.3 (MDL Sample Complexity Corollary). For any prior p over a countable H s.t.∑
h p(h) ≤ 1 and any h∗ ∈ H, with sample complexity:

m(h∗, ϵ, δ) =
ln(1

p(h∗)) + ln(1/δ)

ϵ

for any distribution D s.t. LD(h
∗) = 0, we have:

PS∼Dm [LD(MDLp(S)) ≤ ϵ] ≥ 1− δ

Structural Risk Minimization (SRM). So far we have only discussed learning guarantees in
the realizable setting. We now generalize to consider the agnostic setting. Given a prior p over H,
it is not too hard to show that with probability ≥ 1− δ over S ∼ Dm, we have:

∀h ∈ H,LD(h) ≤ LS(h) +

√
ln(1/p(h)) + ln(2/δ)

2m

where LS(h) is minimized by ERM and

√
ln(1/p(h))+ln(2/δ)

2m is minimized by MDL. Because we
want to minimize this upper bound, its natural to define the following “structural risk minimization”
(SRM) learning rule SRMp(S):

SRMp(S) = argminh∈HLS(h) +

√
ln(1/p(h))

2m

We can see that SRM is trying to balance fitting the data with matching the prior. Similar
to our previous learning guarantee Theorem 3.1 for MDL in the realizable case, can present the
following SRM learning guarantee

Theorem 3.4 (SRM Learning Guarantee over Countable Hypothesis Class). For prior p over a
countable H s.t.

∑
h∈H p(h) ≤ 1, any distribution D, any δ ∈ (0, 1),m ∈ N, with probability ≥ 1−δ

over S ∼ Dm we have:

LD(SRMp(S)) ≤ inf
h∈H

(
LD(h) + 2

√
ln(1/p(h)) + ln(2/δ)

2m

)
(3.3)

We now aim to generalize beyond our cardinality-based bound to uncountable classes.

3.2 Non-Uniform Learning over Uncountable Hypothesis Classes
(Lecture 5)

One such uncountable hypothesis class could be

H = {x 7→ sign(f(x)) | f : Rd → R is a polynomial}

where vc(H) = ∞. Observe that because H is uncountable, there is no valid prior p possible
that satisfies ∀h∈Hp(h) > 0, where we require this condition to ensure that any hypothesis can be
learned. But we still want our learning to have an inherent bias towards simpler predictors – for
example, what if we could bias towards polynomials in H with lower complexity?

23

Priors over Hypothesis Classes. Our first attempt is to use priors over entire hypothesis
classes, meaning that we will decompose H =

⋃
r∈NHr, where Hr is the set of degree r polynomial

functions. We then can have a prior p(Hr) over these Hr hypothesis classes.
Now just using the VC Dimension bound we know that ∀r, choosing δr we have:

PS∼Dm [∀h ∈ Hr : LD(h) ≤ LS(h) + ϵr] ≥ 1− δr, where ϵr = O

(√
vc(Hr) + ln(1/δr)

m

)
Then setting δr = p(Hr) · δ and taking a union bound over all r hypothesis classes3, we will

have:

PS∼Dm [∀r, ∀h ∈ Hr : LD(h) ≤ LS(h) + ϵr] ≥ 1− δ, where ϵr = O

(√
vc(Hr) + ln(1/p(Hr)) + ln(1/δ)

m

)
Once again wanting to optimize this upper bound ϵr, we can arrive at the following form for an

SRM-style learning rule:

SRMp(S) = argminr,h∈Hr
LS(h) + c

√
vc(Hr) + ln(1/p(Hr))

m

Note that when Hr = {hr} =⇒ vc(Hr) = 0, and so this would reduce to the standard SRM
guarantee over a countable class, up to constants. Conversely, when all prior mass is concentrated
on a give hypothesis class (i.e. p(Hr0) = 1), then this would simply reduce to our ERM bound over
Hr (Corollary 1.16). Thus, using our decomposition of H into countably many hypothesis classes
with prior p(Hr) = 2−r, we can arrive at the following non-uniformly-learnable sample complexity:

m(ϵ, δ, h) = O

(
ddeg(h) + deg(h) + ln(1/δ)

ϵ2

)
To see how we got this result, see the above boxed result and note that r = deg(h) and thus we

simplify vc(Hr) as d
deg(h).

We now shift to any general hypothesis class H that we can decompose into {Hr}r∈N. Generally
speaking, in practice we will have have vc(Hr) be monotonically increasing whereas ln(1/p(Hr))
is monotonically decreasing. Thus, SRM can be viewed as a bi-criterion optimization problem of
minimizing LS(h) + r(h), where r(h) = min{r ∈ N : h ∈ Hr}. Omar notes that we can add a
λ ∈ R parameter in front of r(h) to control SRM’s regularization and trajectory (i.e. there is a λ-
controlled tradeoff between minimizing r(h) and Ls(h).) Furthermore, we can present the following
general theorem (which we will not prove):

Theorem 3.5 (Non-Uniformly-Learnable ⇐⇒ H is a Countable Union of Finite VC Hypothesis
Classes). A hypothesis class H is non-uniformly-learnable ⇐⇒ H is a countable union of finite
VC classes, or H =

⋃
r∈NHr where ∀r, vc(Hr) < ∞.

Before concluding this section, we present a relaxed version of non-uniformly-learnability by
allowing the sample complexity to change based on the data distribution D:

3The way to see this is that PS∼Dm [∃ r, h ∈ Hr s.t. LD(h) > LS(h) + ϵr] ≤
∑

r δr = δ
∑

r p(Hr) ≤ δ.

24

Definition 3.6 (Consistently-Learnable Hypothesis Class). A hypothesis class H is consistently-
learnable if there exists a learning rule A such that ∀(ϵ, δ) ∈ (0, 1)2,∀h ∈ H,∀D,∃ m(ϵ, δ, h,D) ∈ N
where:

PS∼Dm(ϵ,δ){LD(A(S)) ≤ LD(h) + ϵ} ≥ 1− δ (3.4)

Note that this definition is not trivial, meaning that there exists domain X and a hypothesis
class H that is consistently-learnable but not non-uniformly-learnable. We now shift to discussing
another famous approach for non-uniform learning on uncountable hypothesis classes.

PAC-Bayes Theory. As opposed to placing a prior over hypothesis classes, another approach
is to place a prior (not necessarily discrete) over H itself. This is known as PAC-Bayes.

We start by defining a randomized/average predictor hQ (i.e. h is sampled from distribution
Q) as:

hQ(x) = y w.p. Ph∼Q[h(x) ̸= y]

Where we define the expected error of this random predictor hQ as:

LD(hQ) := E(x,y)∼D[Eh∼Q1[h(x)̸=y]]

With this new technology and idea of hypotheses sampled from a distribution, we present the
famous PAC-Bayes generalization error bound:

Theorem 3.7 (PAC-Bayes Generalization Error Bound). For any class H and any prior distribu-
tion P over H, any distribution D over X ×Y , any δ ∈ (0, 1), m ∈ N with probability ≥ 1− δ over
S ∼ Dm:

∀ posterior distributions Q over H : |LD(hQ)− LS(hQ)| ≤

√
KL(Q || P) + log(2m/δ)

2(m− 1)
(3.5)

First observe that this bound is only non-vacuous when supp(Q) ⊆ supp(P), as otherwise the
KL(Q || P) term would blow up. To emphasize the generality of priors P allowed, observe:

• Suppose we have finite H with P ∼ Unif(H)

– For Q being a point mass on some h ∈ H,KL(Q || P) = log |H|, as would be expected
(Theorem 1.4).

• For discrete distributions P and point mass distributions Q, KL(Q || P) = log(1/P (h)),
which matches our MDL bounds Theorem 3.1

• For continuous P (e.g. over linear predictors or polynomials), if Q is a point mass then
KL(Q || P) is infinite.

Finally, Omar finishes by noting that the given upper bound on the generalization error in the
PAC-Bayes bound Theorem 3.7 alludes to yet another SRM-style algorithm to minimize LS(hQ)+

25

https://math.stackexchange.com/questions/4536743/what-does-w-p-mean-in-formulas

λKL(Q || P). It has actually been found that the solution to this minimization problem for any
fixed λ is Qλ(h) ∝ P (h) exp(−ηLS(h)) for some “inverse temperature” η.

That concludes our discussion of non-uniform learning. The main takeaway here is that tar-
get concepts are learnable with a sample complexity appropriate for their complexity, description
length, etc.

26

Chapter 4

Boosting & Sample Compression

4.1 Introduction to Boosting (Lecture 6)

What is boosting. We start understanding boosting by looking at what it means to boost δ in
the PAC-learning setting, or the confidence parameter of the outputted predictor. The question we
ask is if given an algorithm A that PAC-learns a hypothesis class H with ≤ ϵ error and ≥ 1 − δ0
confidence, is it possible for us to construct another algorithm B that (ϵ, δ)-PAC-learns-H for any
δ?

The answer to this question is yes1! Now what about for boosting the error ϵ? Suppose our
learning algorithm A gives us some hypothesis only slightly better than 1/2 (i.e. ϵ0 = 1/2 − γ
for some small positive γ). Can we construct some other learning algorithm to achieve arbitrarily
lower error? Omar notes that this question to boost the error has a rich history since 1988, and
has led to the famous AdaBoost algorithm. Before going further in our study of how to create this
“boosted” classifier, we should be on the same page about what it means to have a “weak learner”
that’s slightly better than guessing. Note that we are only interested in weak-learners that do better
than 50% error, as we could achieve a classifier with 50% error that just flips a coin and outputs
+1 and −1 for heads and tails respectively.

Definition 4.1 (Weak-PAC-learnable Hypothesis Class). A hypothesis class H is weakly-PAC-
learnable if there exists an error parameter ϵ0 = 0.5 − γ and a learning algorithm A such that
∀δ ∈ (0, 1),∀D s.t. infh∈H LD(h) = 0,

PS∼DmA(δ) [LD(A(S)) ≤ 1

2
− γ] ≥ 1− δ (4.1)

We typically refer to γ as the “edge” of our weak learner.

Note that this is in contrast to our familiar definition of (strong) PAC-learning given by Defini-
tion 1.8, where we demanded that our learning algorithm be capable of outputting a predict with
arbitrarily low error (i.e. ϵ could be anything in (0, 1). The major question of today then is:

If a class H is weakly-PAC-learnable, is it also strongly PAC-learnable?

1We will see this in Problem Set 2 in the realizable setting.

27

Omar notes that our guess should be yes, as otherwise we would not be having this lecture.
Moreover, there’s a simple proof using our Fundamental Theorem of Statistical Learning (Theo-
rem 1.18):

Proof. If vc(H) = ∞ =⇒ H is not weakly-PAC-learnable. This is because we can always create a
realizable distribution D where A(S) will give a hypothesis consistent on the sample mA(δ) but not
on the remainder of unseen points. In other words, ∀γ > 0 we can create a large enough distribution
D which is realizable (by definition of vc(H) = ∞) where A(S) will make > 0.5− γ error on all the
points outside of the small sample so LD(A(S)) > 0.5 − γ. Thus using contrapositive we get that
if H is weakly-PAC-learnable =⇒ vc(H) < ∞ =⇒ H is strongly-PAC-learnable.

But this is not a terribly satisfying as it does not give us (i) a boosting algorithm B using some
weak-learner A (ii) any information on the computational efficiency of B relative to A.

AdaBoost Algorithm. We now present the AdaBoost (adaptive boosting) algorithm, which is
a canonical boosting algorithm.

(i) Input: Dataset S = {(xi, yi)}mi=1, Weak-Learner A, and number of iterations T

(ii) Create a uniform distribution D1(i) = 1/m over the training examples.

(iii) Now for each iteration t ∈ [1, T]:

• Run weak-learner A on distribution Dt, and set ht := A(Dt)

• Computed the weighted-error ϵt:

ϵt = LDt(ht) =
m∑
i=1

Dt(i)1{ht(xi) ̸= yi}

By the weak-learning assumption, we have ϵt < 0.5.

• Choose αt =
1
2 ln(

1−ϵt
ϵt

)

• (Adaptive Step). For sample i ∈ 1, . . . ,m:

Dt+1(i) =
Dt(i)

Zt
×

{
e−αt if ht(xi) = yi,

eαt if ht(xi) ̸= yi,
=

Dt(i) exp(−αtyiht(xi))

Zt
,

where our normalization constant is given by

Zt =

m∑
j=1

Dt(j) exp(−αtyjht(xj)).

(iv) Output the final predictor as a weighted-average over all the predictors we have learned:

h1:T (x) = sign(

T∑
i=1

αtht(x))

28

It should be clear on a first read why this algorithm is called “adaptive”, in many different
ways. Note that the main secret sauce of the algorithm is in the red step: the new distribution
Dt+1(i) shifts the weights so the next iteration will focus on the mistakes ht made in the current
iteration:

Dt+1(i) =
Dt(i)

Zt
×


√

ϵt
1−ϵt

if ht(xi) = yi, decrease sample weight√
1−ϵt
ϵt

if ht(xi) ̸= yi, increase sample weight

We now provide some further technical analysis of why AdaBoost works. Understand first that
the weight update can be simplified to:

Dt+1(i) =

{
Dt(i)

2(1−ϵt)
if ht(xi) = yi

Dt(i)
2ϵt

if ht(xi) ̸= yi

as the normalizing constant Zt is:

Zt =
∑

i:ht(xi)̸=yi

Dt(i)

√
1− ϵt
ϵt

+
∑

i:ht(xi)=yi

Dt(i)

√
ϵt

1− ϵt

= ϵt

√
1− ϵt
ϵt

+ (1− ϵt)

√
ϵt

1− ϵt
= 2
√
ϵt(1− ϵt).

So then the error w.r.t. Dt+1 of the previous iteration’s weak learner ht can be given by:

LDt+1(ht) =
∑

i:ht(xi)̸=yi

Dt+1(i) =
∑

i:ht(xi) ̸=yi

Dt(i)
1

2ϵt
= ϵt ·

1

2ϵt
=

1

2
.

This prevents the case in which our model at each iteration is returning the same hypothesis,
as by definition of weak learner LDt+1(A(Dt+1)) ≤ 0.5− γ ̸= 0.5 = LDt+1(ht).

We now present our first learning guarantee of AdaBoost:

Theorem 4.2 (Upper bound of AdaBoost Training Error w.r.t D1). Let γt = 1/2 − ϵt and let
D1 be any initial distribution over {(xi, yi)}mi=1. Then, running AdaBoost for T rounds produces
predictor h1:T with error w.r.t D1 bounded by:

LD1(h1:T) = P(x,y)∼D1
[h1:T (x) ̸= y] ≤

T∏
t=1

√
1− 4γ2t ≤ exp(−2

T∑
t=1

γ2t) (4.2)

First observe the vacuous case for the above theorem is if γt = 0. We now compute some
numerics. Suppose that if ∀t ∈ 1, . . . , T, γt ≥ 10% or equivalently ϵt ≤ 40%. Then by the above
theorem, we have the following guarantee on the final training error:

LD1(h1:T) ≤ (
√
1− 4 · 0.12)T ≈ (0.98)T

For T = 5, this upper bound (≤ 0.9ish) is not great. But the above result shows us that the
training error is decreasing exponentially fast as a function of the number of rounds T . Theorem 4.2
also gives us the slightly weaker corollary:

29

Corollary 4.3 (Weaker Upper Bound of AdaBoost Training Error w.r.t. D1). If max1≤t≤T εt ≤
1
2 − γ for some γ > 0, then the output predictor h1:T of AdaBoost has error w.r.t. D1 bounded by

LD1 (h1:T) = P(x,y)∼D1

[
h1:T (x) ̸= y

]
≤

T∏
t=1

√
1− 4γ2 ≤ exp(−2γ2T).

To demonstrate why this may be useful, suppose we have some weak learner A with ϵ0 = 1/2−γ,
so the assumptions for the above corollary are satisfied. Then ∀ϵ > 0, running AdaBoost for
T = ln(1/ϵ)

2γ2 iterations guarantees LD1(h1:T) < ϵ. Moreover for ϵ = 0.5/m, after T = ln(2m)
2γ2

iterations we will have LD1(h1:T) < 0.5/m =⇒ zero training error.
We now prove Theorem 4.2.

Proof. Consider running AdaBoost for T rounds, and define F (x) =
∑T

t=1 αtht(x). Then:

• By the weight update equation, we have:

DT+1(i) = D1(i)×
exp(−α1yih1(xi))

Z1
× · · · × exp(−αT yihT (xi))

ZT

=
D1(i) exp(−yi

∑T
i=1 αtht(xi))∏T

t=1 Zt

=
D1(i) exp(−yiF (xi))∏T

t=1 Zt

• Observe that h1:T (x) = sign(F (x)). If h1:T (x) ̸= y =⇒ y · F (x) ≤ 0 =⇒ exp(−yF (x)) ≥ 1.
So 1{h1:T (x) ̸= y} ≤ exp(−yF (x)).

• Then, we can bound the error of h1:T w.r.t. to D1 as follows:

LD1(h1:T) =
m∑
i=1

D1(i)1{h(xi) ̸= yi} ≤
m∑
i=1

D1(i) exp(−y(F (x)) =
m∑
i=1

DT+1(i)
T∏
t=1

Zt =
T∏
t=1

Zt

• All that is left to do is compute
∏T

t=1 Zt:

T∏
t=1

Zt =

T∏
t=1

2
√
ϵt(1− ϵt) =

T∏
t=1

2
√
(1/2− γt)(1/2 + γt) =

T∏
t=1

√
1− 4γ2t

Omar notes the following plot from Boosting: Foundations and Algorithms shows that AdaBoost
really does work (and beats our theoretical expectations):

30

https://direct.mit.edu/books/oa-monograph/5342/BoostingFoundations-and-Algorithms

Note that the error at each time step is computed on the training set w.r.t to Dt, so it makes
sense that the base learner (i.e. h0) would increase over time. But this is for the training error,
which is not what we really care about. What we really care about is the generalization error of
AdaBoost: how can we bound or better understand AdaBoost’s generalization error?

Generalization error of AdaBoost. Our first tool we will use is VC Theory. To do so, we’ll
need a hypothesis class, which we call B:

B = {all hypothesis/predictors outputted by weak-learner A}

B is essentially our “base class.” Now recall the output form of AdaBoost as h1:T = sign(
∑T

t=1 αtht(x)).
We can write this as a weighted majority-vote over predictors in B:

CT = {x 7→ sign(

T∑
t=1

αtht(x)) | α1:T ∈ RT , h1, . . . , hT ∈ B}

So our hypothesis class for the AdaBoost output h1:T can be given as CT (note the meaningful
parameterization of CT by T). So to invoke our standard VC-based uniform convergence bounds,
we will want to bound CT . We have two claims:

• Claim: If B is finite, then ΓCT
(m) ≤ (emT)T |B|T . This is because we have |B|T choices for

h1:T . Fixing h1:T then gives us a feature map ϕ(x) = (h1(x), . . . , hT (x)) ∈ RT . Because this
has a known VC dimension of T =⇒ we have ≤ (emT)T possible labelings2 on this fixed
feature map. Thus ΓCT

(m) ≤ (emT)T |B|T =⇒ vc(CT) = O(T log |B|).
2Note that we are playing around with the α1:T ∈ RT

31

• Claim: If B has VC dimension d, then ΓCT
(m) ≤ (emT)T (emd)dT . This is done with a similar

argument as before. Each of the T functions fromB we will choose has (emd)d possible labelings
on m points, so there are ≤ (emd)dT total possible labelings possible fixing h1:T . Then fixing
this choice of T hypotheses we can similarly play with the coefficients α1:T to yield a factor
of (emT)T =⇒ in total we have ΓCT

(m) ≤ (emT)T (emd)dT =⇒ vc(CT) = O(dT log T).

So now that we have good control over vc(CT), we are free to invoke our previous VC dimension
uniform convergence theorems to arrive at the following:

Theorem 4.4 (AdaBoost Expected Error VC-Dimension Bound). Running AdaBoost for T rounds
using a base class B on a random sample S ∼ Dm (where D is an arbitrary distribution) guarantees,
with probability at least 1− δ, that the output of AdaBoost satisfies

LD (h1:T) ≤ LS (h1:T) +O

(√
vc(B)T ln(m) + log(1/δ)

m

)
.

Furthermore, with probability at least 1 − δ, if AdaBoost is consistent with the training data, i.e.,
LS (h1:T) = 0, then

LD (h1:T) ≤ O

(
vc(B)T ln(m) + log(1/δ)

m

)
.

Corollary 4.5 (Weaker VC-Dimension Bound on AdaBoost Expected Error.). If, in addition to the
assumptions above, each base predictor ht satisfies LDt(ht) = εt ≤ 1

2 − γ where Dt is a reweighting
of S, then setting T = ln(2m)/(2γ2) guarantees, with probability at least 1− δ over S ∼ Dm, that

LD (h1:T) ≤ O

(
vc(B)(lnm)2 + log(1/δ)

γ2m

)
.

There is actually one case which we have conveniently avoided: vc(B) = ∞, or that our weak
learner A’s hypothesis class has infinite VC dimension. We move onto covering compression based
bounds.

4.2 Introduction to Sample Compression Learning (Lecture 6)

We start with a definition.

Definition 4.6 (Sample Compression Schemes). A learning rule or algorithm A : (X×Y)⋆ → Y X

admits a compression scheme of size k if there exists a compression map κ : (X ×Y)⋆ → (X ×Y)k

such that for any sequence of examples S = ((x1, y1), . . . , (xm, ym)) it holds that κ(S) ⊆ S and
A(S) = A(κ(S)). That is, the output hypothesis h = A(S) can be represented by k examples κ(S),
and h = A(κ(S)).

Essentially we are saying that a learning algorithm A has a compression scheme if it can require
only κ-training examples to generate the same output. This immediately gives us the following
learning guarantee on the expected error LD(A(S)):

32

Theorem 4.7 (Sample Compression Schemes =⇒ Learning). Let A be a learning rule that admits
a compression scheme of size k. Then, for any distribution D, with probability at least 1− δ over
S ∼ Dm,

LD(A(S)) ≤ LS(A(S)) +

√
k ln(m) + ln(1/δ)

2(m− k)
.

Furthermore, with probability at least 1− δ over S ∼ Dm, if LS(A(S)) = 0, then

LD(A(S)) ≤ k ln(m) + ln(1/δ)

m− k
.

While we will not prove this theorem, Omar notes that it is not too difficult. So how can
we use Theorem 4.7 to gain good control over AdaBoost’s generalization error? Consider some
input S of m examples and a deterministic weak-learner A with ϵ0 = 1/2− γ that needs m0 ≪ m
samples. At each round of boosting, call A on a sample St ∼ Dm0

t so ht = A(St), where Dt is the
AdaBoost-computed re-weighting of the training dataset St. Because each weak hypothesis ht can
be represented by the sequence of m0 examples it was outputted from, after running for T rounds
we would need ≤ Tm0 examples to reconstruct weak hypotheses h1:T .

This feels a lot like AdaBoost admitting a sample-compression-scheme: we have a specified num-
ber of samples Tm0 we require to get the hypotheses h1:T from AdaBoost(S). More specifically, us-
ing all

⋃T
i=1 St samples, we can recover h1, . . . , hT . But there is a catch: AdaBoost(S) includes coef-

ficients α1:t, which are computed based on all of S. Thus, AdaBoost(
⋃T

i=1 St) ̸= AdaBoost(S) =⇒
AdaBoost does not admit a sample-compression-scheme. This motivates the creation of hybrid
compression schemes3:

Definition 4.8 (Hybrid Compression Schemes). A learning rule A : (X × Y)⋆ → Y X admits
a hybrid compression scheme of size k and VC dimension d, if there exists a compression map
κ : (X × Y)⋆ → (X × Y)k and a hypothesis class map F : (X × Y)k → {h : X → Y } such
that for any sequence of examples S ∈ (X × Y)m it holds that κ(S) ⊆ S, vc(F (κ(S))) ≤ d, and
A(S) ∈ F (κ(S)). That is, the output hypothesis h = A(S) lies in the hypothesis class F (κ(S))
which has VC dimension at most d.

which has the analogous learning guarantee on generalization error:

Corollary 4.9 (Hybrid Compression Schemes =⇒ Learning). Let A be a learning rule that admits
a hybrid compression scheme of size k and VC dimension d. Then, for any distribution D, with
probability at least 1− δ over S ∼ Dm, if LS(A(S)) = 0, then

LD(A(S)) ≤ O

(
d ln

(
(m− k)/d

)
+ k ln(m) + ln(1/δ)

m− k

)
.

So then we can view AdaBoost as a hybrid compression scheme! The T weak hypotheses h1:T
can be presented by a sequence of k = Tm0 examples. Then resulting class from which AdaBoost’s
output is selected is the set of all weighted majority votes functions:

F = {x 7→ sign(
T∑
t=1

αtht(x)) | α1:T ∈ RT }

where vc(F) = T . Thus, applying Corollary 4.9 we get:

3Omar notes that the creation of this kind of definition is purely for the analysis we are doing now.

33

Theorem 4.10 (AdaBoost Hybrid Compression Scheme Generalization Error Bound). Running
AdaBoost for T rounds using a deterministic weak learner A that consumes m0 samples per round
guarantees, with probability at least 1 − δ over S ∼ Dm (for arbitrary distribution D), that if
AdaBoost is consistent with the training data, i.e., LS(h1:T) = 0, then

LD(h1:T) ≤ O

(
T ln

(
m−Tm0

T

)
+ Tm0 ln(m) + ln(1/δ)

m− Tm0

)
≤ O

(
Tm0 ln(m) + ln(1/δ)

m− Tm0

)
and similarly applying Corollary 4.5, we get the following corollary:

Corollary 4.11 (AdaBoost Zero Training Error Bound on Generalization Error). If, in addition
to the assumptions above, each base predictor ht satisfies LDt(ht) = ϵt ≤ 1

2 − γ where Dt is a
reweighting of S, then setting T = ln(2m)/(2γ2) guarantees with probability at least 1 − δ over
S ∼ Dm,

LD(h1:T) ≤ O

(
m0(lnm)2 + ln(1/δ)

mγ2

)
.

We finish with an important theorem connecting weak and strong PAC-learning.

Theorem 4.12 (Weak PAC-Learnable ⇐⇒ Strong PAC-Learnable). A hypothesis class H is
(efficiently) weakly PAC learnable if and only if is (efficiently) strongly PAC learnable.

Proof. First observe that the direction strong PAC-learnable =⇒ weak PAC-learnable is trivial
and follows straight from the definitions. We prove now that weak PAC-learning =⇒ strong
PAC-learning, using AdaBoost. Let A be an (ϵ0 = 1/2− γ, δ/(2T))-weak-PAC-learner for H (note
that even if δ = 1/2, we can “boost” confidence by repeatedly running A and choosing the best
hypothesis). So using a union bound over all T hypotheses h1, . . . , hT , with probability at least
1− δ/2, all h1:T satisfy ϵt ≤ 1/2− γ.

Then for any H-realizable distribution D, invoking Corollary 4.11 using δ/2, with probability4

at least 1− δ over S ∼ Dm, running AdaBoost on S for T = ln(2m)/(2γ2) rounds will give us

LD(h1:T) ≤ O

(
m0(lnm)2 + ln(1/δ)

mγ2

)
.

which shows strong PAC-learnability as we can make the above RHS arbitrarily small by choos-
ing m appropriately.

Overfitting Paradox. Recall that h1:T denotes the outputted prediction of AdaBoost. Observe
the following behavior and try to think of why it might be confusing:

4Note that we are requiring two independent events with ≥ 1− δ/2 probability to occur so we can use the bound
from Corollary 4.11. So this bound occurs with ≥ 1− δ probability.

34

Even after LS(h1:T) reaches zero, meaning that there is no training error, continuing for more
iterations (i.e. ↑ T) leads to the test risk LD(h1:T) reducing. This is in contrast to our bound The-
orem 4.10, where LD(h1:T) is upper bounded by T . So a natural question then is how do reconcile
thse generalization error bounds derived from complexity measures with empirical performance?

4.3 Margin-Based Analysis of Boosting (Lecture 7)

I found reviewing AdaBoost’s algorithm before this section very helpful.

Recall AdaBoost’s outputted predictor h1:T = sign(
∑T

t=1 αtht(x)). Let us first normalize h1:T (x)

by setting each αt to αt/
∑T

t=1 αT . Then given some point (x, y) ∈ X × {±1}, the margin can be
given as y · f(x). The most important property here is that h1:T (x) ̸= y ⇐⇒ y · f(x) ≤ 0.
Equipped with this new technology, we provide the following supplement figure to our previous
graph of train/test error over T :

This should show us that as T increases, the CDF over the empirical margins not only gets
smoother but largely concentrates in the 0.6−0.8 range (which we want!). Note that we required αt

35

to be normalized to ensure that the maximum possible margin was either +1 or −1, which makes
the margins of two different points actually meaningful to compare5.

We are now ready to consider the following bound on AdaBoost’s θ−margin loss (before doing
so, it might be a good idea to recall what ϵt in the AdaBoost algorithm is!):

Theorem 4.13 (AdaBoost θ-margin-loss bound after T iterations). Let γt =
1
2 − ϵt, and let D1

be an arbitrary initial distribution over {(x1, y1), . . . , (xm, ym)}. Then, running AdaBoost for T
rounds produces a predictor f(x) =

∑T
t=1 atht(x) such that for all θ ∈ [0, 1], the θ-margin-loss is

bounded as

Pr
(x,y)∼D1

[y · f(x) ≤ θ] ≤
T∏
t=1

√
(1− 2γt)1−θ(1 + 2γt)1+θ

So the above is a probabilistic bound on any training sample having a margin too-high. Before
proceeding further, observe the following properties:

• Weak-Learning Assumption. If for all rounds 1 ≤ t ≤ T, ϵt ≤ 1/2 − γ for some γ > 0, then
the bound can be simplified6 to (

√
(1− 2γ)1−θ(1 + 2γ)1+θ)T .

• Moreover, when
√
(1− 2γ)1−θ(1 + 2γ)1+θ < 1, the fraction of training examples with a mar-

gin y · f(x) ≤ θ will decrease exponentially fast. Through taking logarithms on both sides,
we can establish the following statement:

√
(1− 2γ)1−θ(1 + 2γ)1+θ < 1 ⇐⇒ θ < Υ(γ) :=

− ln(1− 4γ2)

ln(1+2γ
1−2γ)

meaning that Υ(γ) gives the maximum possible margin θ such that we can guarantee the
percentage of training examples with margin y · f(x) ≤ θ will go to zero with sufficiently
large T . Observe for γ ∈ [0, 1/2], we are guaranteed that γ ≤ Υ(γ) ≤ 2γ. Thus, ∀θ < Υ(γ),
given enough iterations T , all all margins of our training examples will be > θ or thus in the
limit case ≥ Υ(γ) ≥ γ (mathematical justification7). Thus, greater edges (↑ γ) yield better
guarantees (↑ Υ(γ)) on how large our margins will be post-training.

But this is a bound only on the training examples. We now introduce two things before giving
a generalization error bound on the 0−1 error. Firstly, given some hypothesis class H, let us define
convex hull of H as:

co(H) =

{
f : x 7→

T∑
t=1

atht(x)

∣∣∣∣∣a1, . . . , aT ≥ 0,
T∑
t=1

at = 1, h1, . . . , hT ∈ H,T ≥ 1

}
Secondly, observe that for any distributionD, P(x,y)∼D

[
sign(f(x)) ̸= y

]
= P(x,y)∼D

[
y·f(x) ≤ 0

]
.

We now give our nice bound:

5For example, without this normalization if we wanted really large margins we could just increase αt arbitrarily.
6Note that this simplification while deceptively simple is actually non-trivial.
7For an analytical treatment of this result, pick a sequence {θt}t all strictly bounded above by Υ(γ) where

supt θt = Υ(γ). Then, lim infT→∞ mini yifT (xi) ≥ lim infT→∞ θT = Γ(γ) ≥ γ.

36

Theorem 4.14 (Generalization 0-1 Error Bound over co(H)). For any hypothesis class H, any
distribution D over X ×Y , any m ∈ N, δ ∈ (0, 1), and any θ ∈ (0, 1), with probability at least 1− δ
over a sample S ∼ Dm, for every f ∈ co(H),

P(x,y)∼D

[
y · f(x) ≤ 0

]
≤ 1

m

∑
(x,y)∈S

1 [y · f(x) ≤ θ] +
2

θ

√
2vc(H) ln

(
em

vc(H)

)
m

+

√
2 ln

(
2
δ

)
m

(4.3)

Observe here that we are bounding the 0− 1 error of sign(f(·)) on D through the θ-margin-loss
on S and a weird-looking complexity term that scales inversely with θ. Furthermore, this bound is
vacuous for θ = 0 and θ = 1 (recall all margins y · f(x) ≤ 1 because all f ∈ co(H) have normalized
coefficients αt.) Omar notes that the proof of this theorem requires using Rademacher Complexity,
which we will discuss in a future lecture.

From Theorem 4.14, we get the following relevant corollary to our AdaBoost algorithm:

Corollary 4.15 (AdaBoost Generalization Zero-One Error Bound). Running AdaBoost using a
base class B with edge γ, on S ∼ Dm for T rounds, guarantees w.p. ≥ 1 − δ that the output of
AdaBoost f =

∑
t αtht satisfies

P(x,y)∼D

[
y · f(x) ≤ 0

]
≤ 1

m

∑
(x,y)∈S

1 [y · f(x) ≤ γ] +
2

γ

√
2vc(B) ln

(
em

vc(B)

)
m

+

√
2 ln

(
2
δ

)
m

(4.4)

One thing to observe is that this generalization bound does not depend on T , which is unlike
other AdaBoost bounds we have seen hitherto.

We now move to proving a very strong statement that gives us a sufficient and necessary
condition for weak learnability. First recall as per Theorem 4.13 that if we have a weak-learner
with edge γ, for any θ < 2γ we can run a (modified) AdaBoost to guarantee that after a large
number of rounds all training examples will have a margin ≥ θ. Moreover in the proof of this
theorem (which we did not cover), the

√
(1− 2γt)1−θ(1 + 2γt)1+θ bound-term at each iteration is

given by choosing:

αt =
1

2
ln(

1 + 2γt
1− 2γt

)− 1

2
ln(

1 + θ

1− θ
)

and hence why we refer to AdaBoost in this case as a “modified” version. We are now ready to
to present our strong theorem on when γ-weak-learnability happens:

Theorem 4.16 (A Necessary and Sufficient Condition for γ-Weak Learnability). We are given an
arbitrary dataset S = {(x1, y1), . . . , (xm, ym)} and a base hypothesis class H. Then H γ-weakly-
learns S if and only if there exists f ∈ co(H) such that yf(x) ≥ 2γ for all (x, y) ∈ S.

Proof. (⇒) If H γ-weakly-learns S, then in principle we can run the modified AdaBoost algorithm
(see above choice of αt) to find a f ∈ co(H) with margin θ that is arbitrarily close to 2γ. This is a
similar idea to the analytical footnote presented in the proof of Theorem 4.13.

(⇐) Suppose there exists f ∈ co(H) such that yf(x) ≥ 2γ for all (x, y) ∈ S. So for any
distribution D over S, we will have:

E(x,y)∼D

[
yf(x)

]
= E(x,y)∼D

[
y
(∑

t

atht(x)
)]

≥ 2γ.

37

Moreover,

E(x,y)∼D

[
y
(∑

t

atht(x)
)]

= Et∼α[E(x,y)∼D

[
yht(x)

]
]

where t ∼ α denotes8 that t is drawn from weights αt, so higher αt means a higher chance of
drawing that t. This is intuitive because αt is normalized as f ∈ co(H). Since Et∼α[E(x,y)∼D

[
yht(x)

]
] ≥

2γ, there exists t such that
E(x,y)∼D

[
yht(x)

]
≥ 2γ.

Finally, observe that because y, ht(x) ∈ {±1}:

E(x,y)∼D

[
yht(x)

]
= Pr

(x,y)∼D

[
ht(x) = y

]
− Pr

(x,y)∼D

[
ht(x) ̸= y

]
= 1− 2 Pr

(x,y)∼D

[
ht(x) ̸= y

]
≥ 2γ

so:

Pr
(x,y)∼D

[
ht(x) ̸= y

]
≤ 1

2 − γ.

which means we have found our ht ∈ co(H) s.t. ht weakly learns S with edge γ.

4.4 Sample Compression Schemes, Revisited (Lecture 7)

We start by presenting an analogous definition to Definition 4.6, now for a hypothesis class H as
opposed to a learning rule A:

Definition 4.17 (Sample Compression Schemes for a Hypothesis Class). A hypothesis class H
admits a compression scheme of size k if there exists a compression map κ : (X ×Y)⋆ → (X ×Y)k

and a reconstruction map ρ : (X × Y)k → Y X such that for any sequence of labeled examples
S = ((x1, y1), . . . , (xm, ym)) realizable by H (i.e., ∃h ∈ H with h(xi) = yi for all i), the following
hold:

• κ(S) ⊆ S;

• letting g = ρ(κ(S)), we have g(xi) = yi for all 1 ≤ i ≤ m.

In words, what this means is that we are compressing via κ a dataset S of size m into k
examples, from which using the reconstruction map ρ we can (correctly) recover all the labels of
all the other m − k examples in S. To some extent, we can think of ρ(κ) : (X × Y)⋆ → Y X

as our new learning rule. As an exercise, Omar leaves us to think about how for hypothesis class
H = {axis aligned rectangles in R2}, there will be a sample compression scheme of k = 4 (answer9).
In parallel to our sample compression scheme learning rule bound Theorem 4.7, we have:

Theorem 4.18 (Compression =⇒ Learning for a Hypothesis Class). Let H be a hypothesis class
that admits a compression scheme (κ, ρ) of size k. Then, for any distribution D realizable by H,
with probability at least 1− δ over S ∼ Dm,

LD(ρ(κ(S))) ≤
k ln(m) + ln(1/δ)

m− k
.

8This is a slight abuse of notation, but please excuse it!
9We only need the four corners of the rectangle which envelopes all +1 classified points to understand how all

other points in S should be labeled.

38

Proof. Let D be a distribution realizable by H. Then, for a sample S ∼ Dm,

PS∼Dm

[
LD(ρ(κ(S))) > ϵ

]
= PS∼Dm

[
LS(ρ(κ(S))) = 0 ∧ LD(ρ(κ(S))) > ϵ

]
≤ PS∼Dm

[
∃SI := ((xij , yij))

k
j=1 s.t. LS

(
ρ(SI)

)
= 0 ∧ LD

(
ρ(SI)

)
> ϵ
]

≤
(
m

k

)
(1− ϵ)m−k ≤

(
m

k

)
e−ϵ(m−k).

as we have
(
m
k

)
possible choices for SI , where assuming LD(ρ(SI)) > ϵ =⇒ there is a ≤

(1 − ϵ)m−k that all m − k points outside of SI will be labeled correctly (which is required for
LS(ρ(SI)) = 0). We finish by plugging in:

ϵ =
ln
(
m
k

)
+ ln(1/δ)

m− k

which completes the proof.

So we have seen that compression =⇒ learning. But you might be curious at this point if
learning =⇒ compression, which is shown through the following theorem:

Theorem 4.19 (Learning =⇒ Compression). Let H be a hypothesis class of VC dimension d.
Then H admits a sample compression scheme of size O(d logm), where m is the size of the sample
to be compressed.

Proof. We construct a compression scheme using boosting.

• Fix a (deterministic) PAC learner A for H (e.g. an ERM for H).

• Let S = {(x1, y1), . . . , (xm, ym)} be a realizable dataset (by H) to be compressed.

• Run AdaBoost on S using A as the weak learner. Specifically:

– In each round t, draw a subsample St ∼ Dm0
t , where Dt is an empirical reweighting of

the initial uniform distribution D1 on S, and

m0 = O

(
d+ log(δ0= 1/3)

ϵ0= 1/3

)
= O(d).

– Use a fixed weight

α =
1

2
ln

(
2/3

1/3

)
to compute the next distribution Dt+1. (Note: using a fixed α implies that the final
hypothesis is a simple majority vote over h1, . . . , hT).

• By AdaBoost’s guarantee for minimizing the training error on S, the edge in each round
satisfies γ ≥ 1

2 − ϵ0 =
1
2 − 1

3 ≥ 1
6 . Hence, after

T =
ln(2m)

2(1/6)2
= O(lnm)

rounds we have

LS

(
sign

(T∑
t=1

ht

))
= 0.

39

• Define the compression map κ to run the above boosting procedure and select T · m0 =
O(d lnm) examples from the m points in S.

• Define the reconstruction map ρ to take those T ·m0 examples as input and run the (same)
weak learner A to reconstruct h1, . . . , hT , and hence the majority-vote classifier.

Omar notes that there was a conjecture that any hypothesis class H would admit a sample
compression scheme of O(d), as opposed to O(d logm) as we just showed. In fact, in 2003, computer
scientist Manfred Warmuth offered a $600 prize to either prove this conjecture or disprove it with
counterexample of a specific H! We conclude this lecture by proving one more result on sample
compression schemes for finite VC dimension hypothesis classes:

Theorem 4.20 (Learning =⇒ Compression II). Let H be a hypothesis class of VC dimension d.
Then H admits a sample compression scheme of size 2O(d), where m is the size of the sample to be
compressed.

Proof Sketch. We use the same boosting procedure as before. The main new insights are:

• We use a (proper) PAC-learner A for H (e.g. a particular ERM for H). [Note: proper means
the output of A lies in H.]

• We run AdaBoost for many rounds T until the following holds:

∀(x, y) ∈ S : y ·
T∑
t=1

αtht(x) ≥ γ = 1
6 .

We know this is possible by Theorem 4.13.

• Sparsifying the predictor
∑T

t=1 αtht:

– After normalizing αt, observe that
∑T

t=1 αtht can be viewed as a distribution over the
class H. We will call this distribution D.

– The concept of Dual VC Dimension:

∗ For every (x, y) ∈ X × Y , define a function g(x,y) : H → {0, 1} where g(x,y)(h) =
1[h(x) ̸= y]. Let G = {g(x,y) | (x, y) ∈ X × Y }.

∗ The dual VC dimension of H, denoted d⋆, is defined as the VC dimension of G.

– Using uniform convergence on the dual space G implies that sampling N = O
(
d⋆

τ2

)
i.i.d.

predictors from distribution D to choose hi1 , . . . , hiN guarantees w.h.p that:

(x, y) ∈ X × Y :

∣∣∣∣∣∣
T∑
t=1

αt1[ht(x) ̸= y]− 1

N

N∑
j=1

1[hij (x) ̸= y]

∣∣∣∣∣∣ ≤ τ

40

– Choosing τ = 1/12 with some manipulation of the above equation will yield us:

∀(x, y) ∈ S : y ·
N∑
j=1

hij (x) ≥ y ·
T∑
t=1

αtht(x)− 1
12 ≥ 1

6 − 1
12 > 0.

so the N hypotheses hi1 , . . . , hiN will be sufficient to make a consistent predictor on all
of S.

• The compression map κ outputs N ·m0 = O(d⋆d) points from the m points in S (recall m0

from the previous algorithm).

• The reconstruction map ρ receives as input those N ·m0 = O(d⋆d) points and uses the (same)
weak learner A to reconstruct hi1 , . . . , hiN .

• To conclude, we must show that the dual VC dimension satisfies d⋆ ≤ 2d+1.

41

Chapter 5

Rademacher Complexity

5.1 Introduction to Rademacher Complexity (Lecture 8)

So far we have spoken with learning with respect to the 0 − 1 loss. However, what if we are
interested in learning with respect to other loss functions (e.g. regression with MSE or classification
with logistic loss)? Let us formalize this problem to generalize beyond {±1} binary classification
problems. Define Z as our domain space (e.g. X × Y) and D to be our distribution over Z. We
can let F = {f : X → R} be our function class and ℓ : F × Z → R be our loss function. We are
interested in functions in F that compete with this benchmark:

min
f∈F

Ez∼D[ℓ(f, z)]

So our main question for today is understanding how to establish learning guarantees in this
more general setting. The main tool we will use is Rademacher Complexity, which we define now:

Definition 5.1 (Empirical Rademacher Complexity). Let Z be a domain and let F = {f : Z →
R} be a family of functions. For a sequence S = (z1, . . . , zm) ∈ Zm, the empirical Rademacher
complexity of F with respect to S is

RS(F) = Eσ1,...,σm∼Unif{±1}

[
sup
f∈F

1

m

m∑
i=1

σif(zi)

]
Note here that this is an expectation over σ1, . . . , σm ∼ Unif({±1}). Observe that σif(zi) > 0

means the function’s output of zi and the random label σi “match” by sign, whereas σif(zi) < 0
means the opposite. Thus, the supf∈F term is looking for a function f that matches the random
labels σ1, . . . , σm as best as possible. Another notable quality is that RS(F) does not have an
inherent scale. Indeed if |f | is bounded by some b ∈ R, then 1

m

∑m
i=1 σif(zi) ≤ b. We now present

the main uniform convergence Rademacher Complexity learning guarantee.

Theorem 5.2 (Uniform Convergence by Rademacher Complexity Guarantee). For any distribution
D over Z, function class F = {f : Z → [−1,+1]}, any m ∈ N, and δ ∈ (0, 1), with probability at
least 1− δ over S ∼ Dm,

∀f ∈ F : Ez∼D[f(z)] ≤
1

m

m∑
i=1

f(zi) + 2ES∼Dm [RS(F)] +

√
log(1/δ)

2m

42

Moreover, with probability at least 1− δ over S ∼ Dm,

∀f ∈ F : Ez∼D[f(z)] ≤
1

m

m∑
i=1

f(zi) + 2RS(F) +

√
2 log(2/δ)

m

We should pause to think about why these bounds are remarkable. First, they are both
distribution-dependent bounds as they take into account the specific distribution D you are working
with. The second bound is also data-dependent, as the RS(F) term depends solely on the S sample
you have. This matters because the empirical Rademacher complexity, or its expectation, may
differ across various distributions over Z (why?1). Thus, both these bounds can beat worst-case
VC dimension bounds, which are broad across all data distributions and sample draws. The proof
of this uniform convergence result relies on the powerful McDiarmid’s Inequality:

Theorem 5.3 (McDiarmid’s Inequality). Let Z1, . . . , Zm be independent random variables (not
necessarily identically distributed). If g : Zm → R satisfies the bounded differences condition: there
exist constants c1, . . . , cm ∈ R such that for all z1, . . . , zm ∈ Z and all z̃i,∣∣g(z1, . . . , zi, . . . , zm)− g(z1, . . . , z̃i, . . . , zm)

∣∣ ≤ ci,

then for any ε > 0,

P(g(Z1, . . . , Zm)− E
[
g(Z1, . . . , Zm)

]
≥ ε) ≤ exp

(
− 2ε2∑m

i=1 c
2
i

)
.

While we will not prove this bound, observe that the Zi are not assumed to be identically dis-
tributed. Note that when each zi ∈ [0, 1], we can recover Hoeffding’s bound using g(Z1, . . . , Zm) =
1
m

∑m
i=1 Zi. We now are ready to prove the Rademacher Uniform Convergence bound stated in

Theorem 5.2.

Proof. This proof will take a lot of clever bounding.

1. Part 1: WTS ES∼Dm [supf∈F (ED[f]− ES [f])] ≤ 2ES∼Dm [RS(F)]

ES∼Dm

[
sup
f

(
ED[f]− ES [f]

)]
= ES∼Dm

[
sup
f

(
ES′∼Dm

[1
m

∑m
i=1 f(z

′
i)
]
− 1

m

∑m
i=1 f(zi)

)]
= ES∼Dm

[
sup
f

ES′∼Dm

[1
m

∑m
i=1

(
f(z′i)− f(zi)

)]]
≤ ES,S′∼Dm

[
sup
f

1

m

∑m
i=1

(
f(z′i)− f(zi)

)]
= EσES,S′∼Dm

[
sup
f

1

m

∑m
i=1 σi

(
f(z′i)− f(zi)

)]
≤ EσES′∼Dm

[
sup
f

1

m

∑m
i=1 σif(z

′
i)
]
+ EσES∼Dm

[
supf

1
m

∑m
i=1(−σi)f(zi)

]
= 2ES∼Dm

[
RS(F)

]
.

1Certain distributions might be easier for F to fit. For example, a linear regression hypothesis class can more
easily D that corresponds to a correlated line compared to random noise over [−1, 1]2.

43

The main tricks here are (1) the use of the ghost sample S′ ∼ Dm that lets us treat zi and z′i
symmetrically and (2) the fact that σi and −σi under the Eσ are identical.

2. Part 2: Show supf∈F (ED[f]− ES [f]) concentrates around ES∼Dm [supf∈F (ED[f]− ES [f])]

supf∈F (ED[f] − ES [f]) is a random variable as it is a function of S ∼ Dm. For this step,
we will use McDiarmid’s Inequality by defining g(S) = supf∈F (ED[f] − ES [f]). We now
must show that g satisfies the bounded differences condition. Define S = (z1, . . . , zm) and
S̃ = (z1, . . . , z̃i, . . . , zm). Then:

|g(S)− g(S̃)| =
∣∣ sup
f∈F

(
ED[f]− ES [f]

)
− sup

f ′∈F

(
ED[f

′]− ES̃ [f
′]
)∣∣

≤
∣∣ sup
f∈F

(
ED[f]− ES [f]−

(
ED[f]− ES̃ [f]

))∣∣
≤ sup

f∈F

∣∣ES̃ [f]− ES [f]
∣∣

= sup
f∈F

1

m

m∑
i=1

|f(z̃i)− f(zi)|.

Note that the last line comes as a fast of S̃ differing by one observation from S. At this point
we know |f | ≤ 1 =⇒ supf∈F |f(z̃i) − f(zi)| ≤ 2, so the bounded differences condition is
satisfied. So we can use McDiarmid’s Inequality to show the desired concentration, and then
use part 1 to recover the first UC bound in the theorem. The second bound in the theorem
can be shown by using McDiarmid’s Inequality to argue that RS(F) concentrates around
ES∼Dm [RS(F)].

Unfortunately because our generalization error bound is dependent on the Rademacher Com-
plexity term RS(F), we should provide one more bound on RS(F). Using Massart’s Finite Lemma,
one can show that for a finite function class F = {f : Z → R} we have:

RS(F) ≤
(
max
f∈F

√√√√ m∑
i=1

f(xi)2
)√

2 log |F |
m

We’ll now do something really cool and connect this to VC Dimension. If F is binary, then the
above implies that:

RS(F) ≤
√

2 log |ΓS(F)|
m

so through use of Sauer’s Lemma when F has the finite VC dimension d:

RS(F) ≤
√
2
d log(em/d)

m

We will now present a few more properties of Rademacher Complexity, which will help us bound
RS(F) for more complex F .

44

Theorem 5.4 (Rademacher Complexity Properties). Let F = {f : Z → R} and G = {g : Z → R}
be function classes. For any sequence S ∈ Zm:

1. If F ⊆ G, then RS(F) ≤ RS(G).

2. For any fixed h : Z → R, RS(h+ F) = RS(F).

3. RS(co(F)) = RS(F), where co(F) = {x 7→ Ef∼P [f(x)] | P is a distribution over F} is the
convex hull of F .

4. RS(F + G) = RS(F) +RS(G).

5. If ϕ : R → R is Lϕ-Lipschitz, then RS(ϕ ◦ F) ≤ LϕRS(F).

We prove only property (3), which we will use later on.

Proof.

RS(co(F)) = Eσ[sup
P

1

m

m∑
i=1

σiEf∼P [f(zi)]] = Eσ[sup
P

Ef∼P [
1

m

m∑
i=1

σif(zi)]] = Eσ[sup
f∈F

1

m

m∑
i=1

σif(zi)] = RS(F)

The main trick here is that supP Ef∼P = supf∈F as the distribution P over F that yields the
largest expected value will just put all its probability mass on the maximal f ∈ F .

5.2 Applications of Rademacher Complexity & Other Complexity
Measures (Lecture 8)

Now recall our generalization zero-one error bound Theorem 4.14 that we utilized to yield a general-
ization zero-one error bound for AdaBoost. We are now ready to prove this result with Rademacher
Complexity.

Proof. First let us define the function G : {(x, y) 7→ yf(x) | f ∈ co(H)}. Now for any θ > 0, we
can consider the following “ramp” loss function ϕ:

ϕ(u) =


1 if u ≤ 0

1− u/θ if 0 ≤ u ≤ θ

0 if u ≥ θ

Observe that this is a Lipschitz continuous function with Lϕ = 1/θ. So now we can invoke the
Rademacher Complexity uniform convergence bound for the class ϕ ◦G. With probability ≥ 1− δ
over S ∼ Dm:

∀f ∈ co(H) : Ez∼Dϕ(yf(x)) ≤
1

m

m∑
i=1

ϕ(yif(xi)) + 2RS(ϕ ◦ G) +
√

2 log(2/δ)

m

Note that by the property (5) of Rademacher Complexity, RS(ϕ ◦ G) ≤ LϕRS(G). Moreover,
RS(G) = RS(co(H)) is clear through definition of empirical Rademacher complexity and by prop-
erty (3), RS(co(H)) = RS(H). Using our previous understanding of RS(H) from VC Dimension,
we have:

45

RS(ϕ ◦G) ≤ 1

θ
·

√
2vc(H) ln(em

vc(H))

m

Thus, we have so far shown the following bound with ≥ 1− δ probability:

∀f ∈ co(H) : Ez∼Dϕ(yf(x)) ≤
1

m

m∑
i=1

ϕ(yif(xi)) +
2

θ
·

√
2vc(H) ln(em

vc(H))

m
+

√
2 log(2/δ)

m

which is not quite the bound that we want. Observe that 1{u ≤ 0} ≤ ϕ(u) ≤ 1{u ≤ θ} and so
P(x,y)∼D[y ·f(x) ≤ 0] ≤ E(x,y)∼Dϕ(yf(x)) and moreover 1

m

∑m
i=1 ϕ(yif(xi)) ≤

1
m

∑m
i=1 1{yi ·f(xi) ≤

θ}. Thus, we are finished.

We move onto computing the Rademacher Complexity of some notable hypothesis classes.

Rademacher Complexity of Linear Predictors. Consider X = Rd and hypothesis class
HB = {x 7→ ⟨w, x⟩ | w ∈ Rd, ∥w∥2 ≤ B}, where we are putting some bound B on the L2-norm of
w. We can then bound RS(HB) as:

RS(HB) = Eσ

[
sup

∥w∥≤B

1

m

∑
i

σi⟨w, xi⟩
]
=

1

m
Eσ

[
sup

∥w∥≤B
⟨w,
∑
i

σixi⟩
]
=

1

m
Eσ

[
B
∥∥∑

i

σixi
∥∥]

≤ B

m

√
E
[∥∥∑

i

σixi
∥∥2] = B

m

√∑
i

E[σ2
i]∥xi∥2 +

∑
i ̸=j

E[σiσj]⟨xi, xj⟩ =
B

m

√∑
i

∥xi∥2 =
√

B2

m
· 1

m

∑
i

∥xi∥2.

where the equality that gets rid of the sup∥w∥≤B comes from this general fact of dual norms:

∥
∑
i

σixi∥∗ = sup{⟨w,
∑
i

σixi⟩ : ∥w∥p ≤ 1}

where ∥·∥∗ indicates the dual norm associated with a given Lp norm ∥w∥p. In our case of p = 2,
it is known the dual norm is the L2 norm. The first inequality is from Jensen’s Inequality as

√
· is

a concave function. Note that this is an example of a scale-sensitive bound, which is in contrast to
VC-style bounds which are scale insensitive to our hypothesis classes.

We can change this setup slightly to now look at sparse linear predictors, or more specifically
HB = {x 7→ ⟨w, x⟩ | w ∈ Rd, ∥w∥1 ≤ B}. We can bound the Rademacher Complexity using similar
logic:

RS(HB) = Eσ

[
sup

∥w∥1≤B

1

m

m∑
i=1

σi⟨w, xi⟩
]
=

1

m
Eσ

[
sup

∥w∥1≤B
⟨w,

m∑
i=1

σixi⟩
]

=
1

m
Eσ

[
B
∥∥ m∑

i=1

σixi
∥∥
∞

]
=

B

m
Eσ

[
max
1≤j≤d

∣∣ m∑
i=1

σixi,j
∣∣]

46

https://en.wikipedia.org/wiki/Dual_norm?utm_source=chatgpt.com#Finite-dimensional_spaces

Now for each j ∈ [d], let us define vj := (x1,j , . . . , xm,j) ∈ Rm, or essentially the slice
of S along the jth dimension. Note that ∥vj∥2 ≤

√
mmaxi ∥xi∥∞. Now let us define V :=

{v1, . . . , vd,−v1, . . . ,−vd}. Observe that2:

B

m
Eσ

[
max
1≤j≤d

∣∣ m∑
i=1

σixi,j
∣∣] = B · RS(V) ≤ B ·max

i
∥xi∥∞

√
2 log(2d)

m

where the last inequality is from Massart’s Finite Lemma.

Other Complexity Measures. Omar comments that in learning settings where the scale mat-
ters, Rademacher Complexity will shine. We briefly take a look at other complexity measures,
starting with VC-Subgraph Dimension or Pollard’s3 pseudo dimension:

Definition 5.5 (Real-Valued Shattering). Let Z be a domain and F = {f : Z → R} a family of
functions. We say that F shatters a sequence S = (z1, . . . , zm) ∈ Zm if there exist θ1, . . . , θm ∈ R
such that for all y1, . . . , ym ∈ {±1} there exists f ∈ F with

∀i ∈ {1, . . . ,m} : yi = 1 ⇐⇒ f(zi) > θi

Definition 5.6 (VC-Subgraph Dimension a.k.a Pollard’s pseudo-dimension). The VC-Subgraph
dimension of F , denoted vcsub(F), is the largest m such that there exists S ∈ Zm that is shattered
by F .

As a remark, I found it a good exercise to check that vcsub(F) = vc({(z, θ) 7→ 1[f(z) ≤ θ] | f ∈
F}). Omar also notes that covering numbers are extremely popular:

Definition 5.7 (Covering Numbers Bound). Let Z be a domain space and F = {f : Z → R} a
family of functions. Let S = (z1, . . . , zm) ∈ Zm be a sequence of points. Consider the projection of
F onto S,

ΓF (S) = {(f(z1), . . . , f(zm)) : f ∈ F} ⊆ Rm.

We say that a finite subset C ⊆ Rm is an ϵ-cover of ΓF (S) with respect to a metric ρ on Rm (e.g.,
ℓ1, ℓ2, ℓ∞) if for all f ∈ ΓF (S) there exists v ∈ C such that ρ(f, v) ≤ ϵ. The empirical covering
number Nρ(ϵ, F,m) is the size of the smallest ϵ-cover of ΓF (S) with respect to ρ (over a worst-case
sequence S).

Theorem 5.8 (Empirical Covering Numbers Bound). Let Z be a domain space and F = {f : Z →
[0, B]} a family of bounded real-valued functions with vcsub(F) = d. Then, for any ϵ > 0,

N∞(ϵ, F,m) ≤
d∑

i=1

(
m

i

)(B
ϵ

)i
,

which is less than
(
emB
ϵd

)d
for m ≥ d.

2I found the below very confusing. What helped me was first considering S = [m] and each vj ∈ V as a function
where vj(i) = xi,j . Then apply directly the definition of Rademacher complexity.

3Dr. David Pollard from Yale!

47

Chapter 6

Online Learning

6.1 Introduction to Online Learning (Lecture 9)

So far in this course we have assumed that all our data come from some distribution D over X×Y .
Moreover, given some sample (X × Y)⋆, we aim to create a predictor which will generalize well to
other test samples assumed to be drawn from D.

We now transition to studying a different framework known as the online learning. In this
framework, the main difference is that we do not assume that the data is coming from some fixed
distribution. This is a big jump from our previous studies – can we hope to say anything without
this distribution assumption?

First note that we can view this as a game between a learner A and adversary B, where the
latter is the one who selects the data to be presented to the former. More precisely, for rounds
t = 1, 2, . . .

• Adversary choses an instance xt ∈ Xt and sends it to the Learner.

• The Learner predicts a label ŷt ∈ Y for xt.

• The Adversary reveals the correct label yt ∈ Y for xt.

The goal for our learner is to make as few mistakes as possible in this very dynamic setting.
Note that if we wanted to write this in math, we can view the Learner as a map:⋃

t≥1

(X × Y)t−1 ×X → Y, or alternatively
⋃
t≥1

(X × Y)t−1 → Y X

where the predictor ht = A((x1, y1), . . . , (xt−1, yt−1)). We will see soon why we call B an
adversary.

No Free Lunch in Online Learning. You might wonder if without any more assumptions if
it is even possible for us to make a learner algorithm that works. As such, we play the following
game where:

X = {students in class}, Y = {±1}

48

and Omar acts as the adversary and randomly chooses us to predict the points. However, he
repeatedly just chooses opposite labels to what we predict! The main idea here is that the adversary
can at each step just create a new hypothesis so our (the learner’s) predictions are wrong. More
rigorously:

Theorem 6.1 (NFL in Online Learning). For any finite domain X = {x1, . . . , xN} and any learner
A, there exists a target function f⋆ : X → {±1} such that A makes N mistakes on the sequence
x1, x2, . . . , xN .

Proof. Present the instances x1, x2, . . . , xN to A, and define f⋆(xi) = −ŷi where ŷi is the label
predicted by A.

Corollary 6.2 (Corollary of NFL). For any infinite domain X and any learner A, there exists a
target function f⋆ : X → {±1} such that A makes a mistake in each round.

As such, we can see that our setup so far requires more assumptions. Thus, we will now
need some more prior knowledge. To start, we assume y = f⋆ for some f⋆ ∈ H, and we assume
“hypothesis class” H ⊆ Y X where the learner knows H but not f⋆. Moreover, for now we will
assume {(xi, yi)}i≥1 is realizable by H.

Similar to our previous idea of PAC-learnability, we now present the analogous Mistake Bound
Model:

Definition 6.3 (Mistake Bound Model). Algorithm A learns a hypothesis class H with a mistake
bound M if learner A makes at most M mistakes on any sequence of examples consistent with some
f⋆ ∈ H.

This is actually a very strong statement as we are making no assumptions on the order of the
sequence {xt}t and asserting that even if we give infinitely many samples to A, A will be correct
for all but finitely many samples. The only assumption we make is that f⋆ ∈ H.

We now try to understand if finite hypothesis classes are learnable under this Mistake Bound
Model. The answer is yes, and we give the very simple CONSISTENTH learner that demonstrates
this:

• Initialize the version space V1 = H.

• For rounds t = 1, 2, . . .

– Upon receiving xt ∈ X, choose a predictor ht ∈ Vt and predict ŷt = ht(xt).

– Upon receiving the true label yt, update the version space

Vt+1 = {h ∈ Vt : h(xt) = yt}.

We now prove that this learner has a bounded number of mistakes:

Theorem 6.4 (Mistake Bound for CONSISTENTH Learner). On any sequence ((xt, yt))t≥1 real-
izable by H, CONSISTENTH makes at most |H| − 1 mistakes.

Proof. If yt ̸= ŷt, then ht is removed from Vt, so |Vt+1| ≤ |Vt| − 1. The true target f⋆ always
remains in the version space (i.e. V1, V2, . . .), hence |Vt| ≥ 1 for all t. Therefore the version space
can shrink by at least one only a total of |V1| − 1 = |H| − 1 times, which bounds the total number
of mistakes by |H| − 1.

49

Now can we do better than this |H| − 1 mistake bound given by the CONSISTENTH learner?
The answer is yes, as we see with the below HALVINGH learner:

• Initialize the version space V1 = H.

• For rounds t = 1, 2, . . .

– Upon receiving xt ∈ X, predict ŷt = MAJORITY
(
h(xt) : h ∈ Vt

)
– Upon receiving the true label yt, update the version space

Vt+1 = {h ∈ Vt : h(xt) = yt}.

Theorem 6.5 (Mistake Bound for HALVINGH Learner). On any sequence ((xt, yt))t≥1 realizable
by H, HalvingH makes at most log2

(
|H|
)
mistakes.

Proof. If yt ̸= ŷt, the majority vote on {h(xt) : h ∈ Vt} is wrong, so at least half of the hypotheses
in Vt misclassify xt and are eliminated when we update to Vt+1. Hence |Vt+1| ≤ |Vt|/2. The true
target f⋆ always remains in the version space, so |Vt| ≥ 1 for all t. After m mistakes we therefore
have 1 ≤ |Vt+1| ≤ |H|/2m, which implies m ≤ log2 |H|.

This is a sure improvement! Before seeing if we can improve this even further or generalize this
to infinite hypothesis classes, we present a some preliminaries under the mistake bound model:

Definition 6.6 (Conservative Online Learning Algorithm). An online learning algorithm A is
conservative if it only changes its state (i.e. predictor) when it makes a mistake.

Theorem 6.7 (Conservative Online Learning Algorithms Preserve Mistake Bound). If a hypothesis
class H is online learnable with a mistake bound M , then it is online learnable by a conservative
algorithm with mistake bound M .

Proof sketch. Given any online learning algorithm A with mistake boundM , define a new algorithm
A′ that simulates A and, whenever A predicts correctly on (xt, yt), discards any function update
(i.e. does not change the state). When A errs, A′ performs the same update as A. So A′ changes
its state only on mistakes, and so it is conservative.

Moreover, the state of A′ after seeing N examples is exactly the state of A if it only sees the
examples on which it made a mistake, which is a legal sequence of examples as per Definition 6.3.
Thus if A sees ≥ M mistakes out of these N samples, after the Mth mistake it is guaranteed to
give a state/predictor that yields no more mistakes =⇒ A′ by the Mth mistake will also no longer
give anymore mistakes. So A′ makes at most M mistakes.

We now test the boundaries of our theory with the following infinite threshold hypothesis class:

X = [0, 1], H = {x 7→ sign(x− θ) | θ ∈ [0, 1]}

Recall Corollary 6.2. We now show that H is NOT learnable under the Mistake Bound Model:

Proof. We present the following procedure to show that for any learner A, we can make sure it has
infinitely many mistakes.

• Start with l1 = 0, r1 = 1.

50

• For rounds t = 1, 2, . . .

– Present xt = lt + (rt − lt)/2.

– If A predicts ŷt = +1, set yt = −1 and update lt+1 = xt.

– If A predicts ŷt = −1, set yt = +1 and update rt+1 = xt.

• Observe that for all rounds t, any threshold θ ∈ (lt+1, rt+1) is consistent with ((xt, yt))
t
t′=1.

• So there is no bound on the number of mistakes our learner A will make on this H-realizable
sequence of examples.

Observe that the things that is being exploited here is the infinite precision of θ. This is a big
(negative) result. First, we should realize that online learnability is a generally stronger condition
than PAC-learnability. Secondly, this result on H implies we cannot learn halfspaces in higher
dimensions! This still begs the question:

Can we have a characterization of which classes H are online learnable?

We back up a little bit. Recall how in PAC-learning, we had the combinatorial characterization
of the VC dimension to easily tell us if something is PAC-learnable. For online learnability, this
parallel quantity will be based on Littlestone trees and dimension.

6.2 Littlestone Dimension for Online Learning (Lecture 9)

Definition 6.8 (Littlestone Trees Definition). A Littlestone tree of depth d is a complete binary tree
whose internal nodes are labeled by instances from X, and whose two edges connecting a node to its
children are labeled with +1 and −1 such that every finite path emanating from the root is consistent
with some concept in H. That is, a Littlestone tree is a collection {xu : 0 ≤ k < d, u ∈ {±1}k} ⊆ X
such that for every y ∈ {±1}d, there exists h ∈ H with h(xy1:k) = yk+1 for 0 ≤ k < d.

The definition is a little thick, so we just show a picture:

51

We now define the Littlestone Dimension, which is our magic sauce:

Definition 6.9 (Littlestone Dimension). The Littlestone dimension of H, denoted lit(H), is defined
as the largest integer d such that there exists a Littlestone tree for H of depth d.

Using this new technology lit(H), we now demonstrate its relevance to understanding when
online learning is possible:

Theorem 6.10 (Lower Littlestone Bound of Mistake Bound of A). For any class H and any
learner A, the mistake bound of A for learning H is ≥ lit(H).

Proof. We first let T := lit(H) and consider a Littlestone tree for H of depth T . We will start
with x1 being the root of the tree. Now for iteration 1 ≤ t ≤ T , we will present the root xt of the
current subtree to the learner A. Now defining A’s prediction as ŷt, we will recurse downwards to
the opposite subtree which will label xt with −ŷt. So the A has effectively mislabeled xt.

Note then by definition of our Littlestone tree with depth T , this path of depth T is realizable
by H. So, we have forced our learner A to make ≥ T mistakes.

Theorem 6.11 (Upper Littlestone Bound of Some Learner A). For any class H, there exists a
learner A that learns H with a mistake bound of ≤ lit(H).

Note that this is generally a tighter improvement over the log2(|H|) upper bound.

Proof. We first present the standard optimal algorithm (SOA), which we will use our learner. Then
we will later show that it has at most lit(H) mistakes. We start SOA by initializing the version
space V1 = H and then for rounds t proceed as follows:

• Receive xt ∈ X

• For r ∈ {±1}, let V (r)
t = {h ∈ Vt : h(xt) = r}

• Predict ŷt = argmaxr∈{±1}lit(V
(r)
t). So we are predicting the label which’s associated hy-

pothesis class has the higher Littlestone dimension.

• Upon receiving the true label yt, update the version space Vt+1 = {h ∈ Vt : h(xt) = yt}.

First note that because Vt+1 ⊆ Vt always, lit(Vt+1) ≤ lit(Vt). If yt ̸= ŷt then we claim this

implies that lit(Vt+1) ≤ lit(Vt) − 1. First observe that Vt+1 = V
(yt)
t . BWOC, assume lit(Vt+1) =

lit(V
(yt)
t) = lit(Vt). Then we know for sure by our argmax rule that lit(V

(ŷt)
t) ≥ lit(V

(yt)
t) = lit(Vt).

And we also know that V
(ŷt)
t ⊆ Vt =⇒ lit(V

(ŷt)
t) ≤ lit(Vt). So therefore, this implies:

lit
(
V

(+1)
t

)
= lit

(
V

(−1)
t

)
= lit(Vt)

So this means V
(+1)
t and V

(−1)
t both have associated d-depth Littlestone trees. So we can

just create a new tree with xt at the root with the associated d-depth Littlestone trees on the
+1 and −1 edge accordingly. But because we are only using functions in Vt to create this bigger
tree of depth lit(Vt) + 1, this means the Littlestone dimension of Vt is ≥ lit(Vt) + 1, which is a
contradiction of the maximality of lit(Vt). Thus, we can conclude in the case of a mistake at iteration
t, lit(Vt+1) ≤ lit(Vt)− 1 =⇒ the total number of mistakes will be at most lit(V1) = lit(H).

52

Corollary 6.12 (Mistake Bound Model Learnability ⇐⇒ Finite lit(H)). A class H is learnable
in the Mistake Bound model if and only if the Littlestone dimension of H, lit(H), is finite.

From the above corollary, we would be interested in the Littlestone dimensions of our thresholds
hypothesis class H. Indeed, lit(H) = ∞ as illustrated by the below figure1:

This should be quite impressive considering vc(H) = 1. Similarly, for halfspaces G (linear
predictors) in Rd, lit(G) = ∞ but vc(G) = d + 1. Moreover, in general it holds that for any class
H, vc(H) ≤ lit(H) as using any VC shattered set of points we can construct a Littlestone tree with
that depth2.

So far we have only seen finite hypothesis classes be online learnable in part because they all
have finite Littlestone dimension. So are there any examples of online learnable infinite hypothesis
classes? Indeed the answer is yes:

X = [0, 1], H = {x 7→ 1[x = θ] | θ ∈ [0, 1]}

Proof. We claim that lit(H) = 1. It is trivial that lit(H) ≥ 1. Moreover, we can consider a learner
A which will predict 0 until it receives a true label of 1, and then memorize this θ and predict the
correct answer after that. Then A will make at most 1 mistake and so by Theorem 6.10, 1 ≥ lit(H).
Thus we are finished.

Online-to-Batch Conversion Schemes. We end this lecture by understanding the relationship
between Mistake Bound Learnability and PAC learnability. To start, one implies the other as:

Mistake Bound Learnability =⇒ vc(H) ≤ lit(H) < ∞ =⇒ vc(H) < ∞ =⇒ PAC-learnability

But to constructively prove this result, we present the Longest Running Survivor technique.
To start, we take as input (ϵ, δ) ∈ (0, 1)2, a (conservative3) online learner A with mistake bound
M , and training samples S = {(xi, yi)}mi=1 ∼ D. We will then run the online learner A on S
until it can produce a hypothesis h that survives ≥ 1

ϵ ln(M/δ) examples. We claim this leads to a
PAC-satisfiable hypothesis:

Theorem 6.13 (Longest Running Survivor Technique (LRST) Yields PAC-Satisfiable Hypothesis).
For any class H, let A be an online learning algorithm with Mistake Bound M(H). Then the Longest

Running Survivor technique halts after seeing O
(M log(M/δ)

ϵ

)
examples and with probability at least

1− δ, produces a hypothesis with error ≤ ϵ.

1Note that in our demonstration that thresholds are NOT learnable under the Mistake Bound Model, we essentially
demonstrated that we can create a Littlestone Tree of infinite depth.

2Just use the same instances across our shattered set for each level. So if {xi}mi=1 is our sequence of m shattered
points, we can make a Littlestone tree with instance x1 as head, instance x2 for the second level, and so forth.

3By Theorem 6.7, we can WLOG assume our learner to be conservative.

53

Proof. Note that for any produced hypothesis h:

P(any single survived h has error > ϵ) ≤ (1− ϵ)ln(δ/M)/ϵ ≤ δ/M

Furthermore, because A is conservative it will at most have M different hypotheses outputted4.
So taking a union bound over all of them, there is a less than δ probability any of them will have
error > ϵ.

6.3 Beyond Realizability: Introducing Regret (Lecture 10)

We have so far assumed that the sequence {(xi, yi)}i fed into our online learner is realizable by our
hypothesis class H ⊆ Y X . We used this assumption in our understanding of the Mistake Bound
Model of (online) learning. But now consider the case in which an adversary’s inputted examples
and reported labels are not consistent with some function in H.

This brings us to this notion of regret. We will still assume a sequential game between a Learner
and an Adversary, where the Learner has access to a reference/benchmark class H. But we are
now longer assuming {(xi, yi)}i is realizable by H.

The goal for our learner now is not to achieve finitely many mistakes, but instead the weaker
goal of minimizing regret:

T∑
t=1

1{ŷt ̸= yt} −min
h∈H

T∑
t=1

1{h(xt) ̸= yt}

So it’s okay if our learner screws up, we just want it to screw up less relative to what’s possible
in H. Note that this also recovers the previous realizable setting (think about what happens to
minh∈H

∑T
t=1 1{h(xt) ̸= yt}).

As is no surprise, we will try to make a bound for the regret. Naturally, we should shoot for a
regret bound that sub-linearly grows with T , such as

√
T , as this would mean the average increase

in regret per time step would ↓ 0 as T → ∞. Unfortunately, given our current setup, sublinear
regret is unachievable. Consider the following counter example:

• Consider a stupid hypothesis class H = {h+, h−}, where h+ always predicts +1 and h− is
vice versa

• For any (deterministic) learner A, there will always exist a sequence {(xi, yi)}Ti=1 such that
A makes T mistakes (refer to Theorem 6.1)

• This means that minh∈H
∑T

t=1 1{h(xt) ̸= yt} ≤ T/2 =⇒ the regret of A ≥ T/2

So to go beyond this result, we have to consider randomized learners. What this means is that
on each round t, the adversary will decide on a label yt without observing the randomness the
learner might perform to produce a prediction (e.g. flipping a coin). Hence, our previous proof will
not apply (in particular the word “always” in the second bullet). Given this randomization in A,
we are now going to analyze the expected regret of the Learner:

4This also means it will take at most M · ln(M/δ)/ϵ examples, as each hypothesis requires ln(M/δ)/ϵ.

54

T∑
t=1

EA[1{ŷt ̸= yt}]−min
h∈H

T∑
t=1

1{h(xt) ̸= yt}

Now can we achieve sub-linear (expected) regret with randomized learners? The answer is yes.
One procedure that demonstrates this is the very famous multiplicative weights procedure for finite
|H|, which we detail below:

• Initialize weights W1(h) = 1 for each h ∈ H and distribution P1(h) = W1(h)/|H|.

• Now for rounds t = 1, 2, . . . , T :

– Adversary chooses xt ∈ X.

– Learner randomly draws a predictor ht ∼ Pt and predicts ŷt = ht(xt).

– Adversary reveals true label yt.

– Learner updates distribution

Wt+1(h) = Wt(h) exp (−η1{h(xt) ̸= yt}) , Pt+1(h) =
Wt+1(h)

Wt+1
,

where Wt+1 :=
∑

h∈H Wt+1(h) is a normalization factor.

So we are essentially always re-weighting in a way to place more mass on the “good” predictors
in H. Morally, this is also similar to AdaBoost as we shall see at the end of the lecture. We now
present the following bound on the expected regret:

Theorem 6.14 (Multiplicative Weights Sub-Linear Expected Regret Bound). On any sequence
{(xt, yt)}Tt=1 and any η > 0, the regret of Multiplicative Weights satisfies

T∑
t=1

E
[
1{ŷt ̸= yt}

]
−min

h∈H

T∑
t=1

1{h(xt) ̸= yt} ≤ ln |H|
η

+
Tη

8
.

We now prove this statement:

Proof.

Lemma 6.15. From Hoeffding’s Bound, for any random variable X with a ≤ X ≤ b, ∀s ∈ R,

lnE[esX] ≤ sE[X] +
s2(b− a)2

8

For each h ∈ H, let us define Lh :=
∑T

t=1 1{h(xt) ̸= yt}. Observe then the following (note
W1,WT+1 were defined as normalization factors):

ln
WT+1

W1
= ln(

∑
h∈H

exp(−ηLh))− ln |H| ≥ ln(max
h∈H

exp(−ηLh))− ln |H| = −ηmin
h∈H

Lh − ln |H|, (⋆)

55

Next, for each t = 1, . . . , T , by definition of the update,

ln
Wt+1

Wt
= ln

∑
h∈H Wt(h) exp

(
− η1{h(xt) ̸= yt}

)∑
h∈H Wt(h)

= lnEh∼Pt [exp(−η1{h(xt) ̸= yt})] .

Invoking our lemma above implies that

ln
Wt+1

Wt
≤ −ηEh∼Pt [1{h(xt) ̸= yt}] +

η2

8
.

So we have:

ln
WT+1

W1
= ln

(
T∏
t=1

Wt+1

Wt

)
=

T∑
t=1

ln
Wt+1

Wt
≤ −η

T∑
t=1

Eh∼Pt [1{h(xt) ̸= yt}] +
η2T

8
.

Putting the above lower bound and previous upper bound (see (⋆) equation) for ln(WT+1/W1)
together gives

−ηmin
h∈H

Lh − ln |H| ≤ ln
WT+1

W1
≤ −η

T∑
t=1

Eh∼Pt

[
1{h(xt) ̸= yt}

]
+

η2T

8
.

By rearranging terms and dividing by η,

T∑
t=1

Eh∼Pt

[
1{h(xt) ̸= yt}

]
−min

h∈H

T∑
t=1

1{h(xt) ̸= yt} ≤ ln |H|
η

+
Tη

8
.

Finally, observe that Eh∼Pt

[
1{h(xt) ̸= yt}

]
= E

[
1{ŷt ̸= yt}

]
by the prediction strategy of

Multiplicative Weights. So we have proved the desired result.

Optimizing (i.e. minimizing) this upper bound as a function of η, we have:

Corollary 6.16 (Multiplicative Weights Sub-Linear Regret Bound). Choosing η =
√
8 ln |H|/T ,

achieves a sub-linear regret of
√
(T/2) ln |H|.

Sub-Linear Regret Bound for Finite Littlestone Dimension. So the multiplicative weights
procedure achieves sub-linear expected regret on finite classes H. Let’s relax the finiteness assump-
tion to hypothesis classes with finite Littlestone Dimension5 lit(H). We can make the following
regret guarantee:

Theorem 6.17 (Sub-Linear Expected Regret Bound for lit(H) < ∞.). For any class H, there
exists an online learner A such that on any sequence {(xt, yt)}Tt=1, A achieves a regret guarantee of

T∑
t=1

EA

[
1{ŷt ̸= yt}

]
−min

h∈H

T∑
t=1

1{h(xt) ̸= yt} ≤
√
(T/2) lit(H) ln

(
eT/ lit(H)

)
.

5It is a good exercise to think of why finite VC Dimension classes do not tell us anything on if sub-linear regret
bounds are possible. Answer: Recall our thresholds hypothesis class H with a meager VC dimension of one. It was
not learnable in the (realizable) Mistake Bound model setting as at each time step in the Learner-Adversary game we
could create a consistent sequence with H where the learner always screwed up. Thus, there is no hope for sub-linear
regret as the

∑T
t=1 1{ŷt ̸= y} can always be made ∝ T .

56

We now show how such a learner A is possible. To do so, we will run the Multiplicative Weights
algorithm on a suitably defined set of experts6. Moreover, we will use different instantiations of the
Standard Optimal Algorithm (SOA) to form these experts. Recall that we used the SOA learner
in Theorem 6.11 for its mistake bound of lit(H). Then we will finish by arguing that for all h ∈ H
and each x1, . . . , xT , we will find some expert that behaves like h on x1, . . . , xT .

We now go into the details. For each M ≤ lit(H) and indices 1 ≤ i1 < · · · < iM ≤ T , we will
define an expert:

Expert (i1, . . . , iM).
Initialize the version space V1 = H.
For rounds t = 1, 2, . . . , T :

1. Receive xt ∈ X.

2. For r ∈ {±1}, let V (r)
t = {h ∈ Vt : h(xt) = r}.

3. Let ỹt = argmaxr∈{±1} lit
(
V

(r)
t

)
.

4. If t ∈ {i1, . . . , iM}, then predict ŷt = 1− ỹt. Otherwise, predict ŷt = ỹt.

5. Update the version space Vt+1 = {h ∈ Vt : h(xt) = ŷt}.

where the main difference between this algorithm and SOA is on predictions for indices i1, . . . , iM
and the version space update. At a high level, an Expert(i1, . . . , iM) simulates a game a be-
tween SOA and the Adversary, where it assumes a-priori that SOA will make a mistake on rounds
i1, . . . , iM . We are going to run Multiplicative Weights with all these N possible experts where N
is given by7:

N =

lit(H)∑
M=0

(
T

M

)
≤ (

eT

lit(H)
)lit(H)

Using the regret guarantee of Multiplicative Weights, we have:

T∑
t=1

E[1{ŷt ̸= yt}]− min
(i1,...,iM)

T∑
t=1

1[{Expert(i1, . . . , im)(xt) ̸= yt}] ≤
√
(T/2) lnN

But we are not done as we aim to compete not over the set of experts, but over the entire
hypothesis class H. To do this, we will use the following lemma:

Lemma 6.18. For any class H, any sequence x1, . . . , xT , and any h ∈ H, there exists M ≤
lit(H) and indices 1 ≤ i1, . . . , iM ≤ T such that, when running Expert(i1, . . . , iM) on the sequence
x1, . . . , xT , the expert predicts the label h(xt) on each round 1 ≤ t ≤ T . In other words, the expert
behaves exactly like h on the sequence x1, . . . , xT .

Proof. Consider running SOA on the sequence (x1, h(x1)), . . . , (xT , h(xT)). By guarantees of SOA,
it makes ≤ lit(H) mistakes. Call the number of mistakes SOA makes as M and define the rounds

6The term “experts” here is identical to saying hypotheses, or a subset of a hypothesis class.
7The inequality displayed holds whenever T ≥ lit(H) + 2.

57

these mistakes were made as 1 ≤ i1, . . . , iM ≤ T . Observe M ≤ lit(H) by SOA guarantee. By
construction, the predictions of Expert(i1, . . . , iM) differ from SOA only on rounds8 1 ≤ i1, . . . , iM ≤
T , the exact rounds on which SOA will predict the wrong label (i.e. predict !h(xij) for 1 ≤ j ≤ M).
So on all rounds, Expert(i1, . . . , iM) always predicts the label h(xt) on all rounds 1 ≤ t ≤ T .

The main idea here is that the finite sets of experts we have defined will essentially recover the
function class. Thus, ∀h ∈ H, following our theorem there is some i1, . . . , iM and M such that
Expert(i1, . . . , iM) and h have the same loss on {(xi, yi)}Ti=1. So for any sequence {(xi, yi)}Ti=1, we
have:

min
(i1,...,iM)

T∑
t=1

1[{Expert(i1, . . . , im)(xt) ̸= yt}] ≤ min
h∈H

T∑
t=1

1{h(xt) ̸= yt}

=⇒
T∑
t=1

E[1{ŷt − yt}]−min
h∈H

T∑
t=1

1{h(xt) ̸= yt} ≤
√

(T/2) lnN

So our demonstration of Theorem 6.17 is complete. Omar notes that we can actually tightly
lower bound this expected regret RegH(T) by O(

√
lit(H) · T):

Theorem 6.19 (Littlestone Dimension Tightly Bounds Regret). For any class H, the regret is
tightly-bounded by the Littletone dimension of H,

O(
√

lit(H)T) ≤ RegH(T) ≤ Õ(
√
lit(H)T)

where Õ(g(n)) ignores logarithmic factors of logk[g(n)].

So Littlestone Dimension completely characterizes hypothesis classes that are online learnable
in both the realizable setting (last lecture) and agnostic setting (this section).

6.4 Connecting Boosting and Online Learning (Lecture 10)

We finish this lecture by investigating the connection between boosting and online learning. Specif-
ically, we can derive a boosting algorithm for weak-learners using the Multiplicative Weights pro-
cedure from online learning! But we will do this in a weird way through the dual space: datapoints
x ∈ X are seen as the “experts” and predictors h ∈ H will be chosen by the adversary. We formally
set this up:

• There is an unknown concept c : X → {±1}
8Because the update step of SOA and Expert(i1, . . . , iM) look different, this might not be intuitive. However,

their update steps are actually identical, which we now prove. Assume V SOA
t = V Expert

t for a time step t (we are
using induction). Now if t /∈ {ij} =⇒ SOA correctly outputted h(xt), so the ŷt = ỹt = h(xt) used to update
V Expert
t exactly matches the (correct) label h(xt) used to update V SOA

t . Now if t ∈ {ij}, the Expert’s ŷt = 1− ỹt =
the opposite of SOA’s wrong output, or just h(xt). Thus, V Expert

t will be updated on ŷt = h(xt) and V SOA
t will

be updated on the correct label h(xt) as usual. So because the update steps are equivalent across all time steps,
by induction we have shown ∀1 ≤ t ≤ T, V SOA

t = V Expert
t . So we can be confident their predictions only differ on

i1, . . . , iM as deliberately prescribed by the Expert(i1, . . . , iM) algorithm.

58

• We have access to a weak-learning algorithm B with edge γ, s.t. ∀D over X,h = B(D) will
have LD(h) ≤ 1/2− γ

• Initialize a distribution P1 to be uniform over X

• Now for rounds t = 1, 2, . . . , T :

– Call weak-learner Bt on Pt, and let ht := B(Pt), where LPT
(ht) ≤ 1/2− γ

– Update Pt distribution over X as follows:

Pt+1(x) =
Pt(x) exp

(
− η1{ht(x) = c(x)}

)
Zt

,

where Zt =
∑

x∈X Pt(x) exp
(
− η1{ht(x) = c(x)}

)
is a normalization factor.

We now demonstrate that this procedure gives us a “boosted” learner that perfectly learns c(x).

Proof. We go through this step by step. The proof is not that bad.

• Let’s write down the regret guarantee of Multiplicative Weights using η =
√
8 ln |X|/T from

Corollary 6.16:

1

T

T∑
t=1

Ex∼Pt

[
1{ht(x) = c(x)}

]
−min

x∈X

1

T

T∑
t=1

1{ht(x) = c(x)} ≤
√

ln |X|
2T

.

• Observe that Ex∼Pt

[
1{ht(x) = c(x)}

]
= 1− LPt(ht) ≥ 1

2 + γ.

• By rearranging terms,

min
x∈X

1

T

T∑
t=1

1{ht(x) = c(x)} ≥ 1
2 + γ −

√
ln |X|
2T

.

• Let T = 2 ln |X|/γ2 so that
√

ln |X|/(2T) = γ/2.

• This ensures that

min
x∈X

1

T

T∑
t=1

1{ht(x) = c(x)} ≥ 1
2 + γ

2 ,

so ∀x ∈ X, strictly more than 50% of the classifiers in {h1, . . . , ht} agree with c(x). Thus,
this implies that ∀x ∈ X : MAJ(h1, . . . , hT)(x) = c(x), where MAJ is a majority vote.

59

6.5 Margin-Based Learning (Lecture 11)

We now take a step back. Previously, we saw how our thresholds hypothesis class H had infinite
Littlestone dimension and was thus not online learnable. But recall this was done through feeding
our learner a path of an infinite Littlestone tree. Thus, when asserting H is not online learnable we
are assuming effectively infinite precision, which may feel like an unrealistically harsh judgement.
Can we go beyond this assumption? We can by using margins. The margin condition for a
halfspaces classifier with margin γ is stated below:

∃ w⋆ ∈ Rd,∀1 ≤ t ≤ T, yt⟨w⋆, xt⟩ ≥ γ

One way to think about this margin is that perturbing a datapoint xt within distance γ̇ =
γ/∥w⋆∥2 should not change the classification9 of w⋆ or equivalently:

∀1 ≤ t ≤ T, inf
∥∆∥2≤γ̇

yt⟨w⋆, xt +∆⟩ > 0

This is likely made more clear through the below figure from Dr. Arvin Blum’s TTIC 31250
course:

From this, we now present the Perceptron algorithm and its margin-based mistake bound:

• Initialize w1 = 0.

• For rounds t = 1, 2, . . . , T :

– Receive xt ∈ X .

– Predict ŷt = sign(⟨wt, xt⟩).
– Observe true label yt.

– If ŷt ̸= yt, set wt+1 = wt + ytxt; otherwise set wt+1 = wt.

9The important thing to note here is that the scale of margin γ is determined by ∥w⋆∥2.

60

Note that this algorithm cleanly does only one sweep over all T examples. Moreover, the
Perceptron algorithm has the following famous margin-based mistake bound:

Theorem 6.20 (Perceptron mistake bound). Let {(xt, yt)}Tt=1 be any sequence such that there
exists w⋆ ∈ Rd with ∀1 ≤ t ≤ T : yt⟨w⋆, xt⟩ ≥ γ (margin condition). Then the number of mistakes
the Perceptron algorithm makes satisfies

T∑
t=1

1{ŷt ̸= yt} ≤ ∥w⋆∥22 ·max1≤t≤T ∥xt∥22
γ2

Before proving this statement, one important thing to note is that this bound is dimension-
independent (i.e. does not depend on d). We now prove this bound.

Proof. It might be helpful to recall C-S inequality before reading the below analysis.

• Let Mt denote the number of mistakes in rounds 1, . . . , t.

• Let R2 = max1≤t≤T ∥xt∥22.

• We will analyze two quantities, ⟨w⋆, wt+1⟩ and ∥wt+1∥22.

• Observe that by definition of wt+1 update

⟨w⋆, wt+1⟩ =
〈
w⋆,

∑
i≤t

ŷi ̸=yi

yixi

〉
=
∑
i≤t

ŷi ̸=yi

yi⟨w⋆, xi⟩ ≥ Mtγ

so in general ∀1 ≤ t ≤ T,Mtγ ≤ ⟨w⋆, wt+1⟩.

• Claim: ∥wt+1∥22 ≤ MtR
2.

– Base case: ∥w1∥22 = 0.

– If there is no mistake in round t, then ∥wt+1∥22 = ∥wt∥22 ≤ Mt−1R
2 = MtR

2.

– If there is a mistake in round t, then

∥wt+1∥22 = ∥wt + ytxt∥22
= ∥wt∥22 + 2yt⟨wt, xt⟩+ ∥xt∥22
≤ ∥wt∥22 + ∥xt∥22
≤ Mt−1R

2 + ∥xt∥22
≤ MtR

2.

• Combining the previous two bullets, after all T rounds,

MTγ ≤ ⟨w⋆, wT+1⟩ ≤ ∥w⋆∥2∥wT+1∥2 ≤ ∥w⋆∥2
√
MTR2.

• Hence,
√
MT ≤ ∥w⋆∥2R/γ. Squaring both sides completes the proof.

61

Using the same assumptions as in Theorem 6.20, we can give another (dimension-full) mistake
bound:

Theorem 6.21 (Halving Algorithm Mistake Bound). There exists an online algorithm A such that
on any sequence {(xt, yt)}Tt=1 for which there exists w⋆ ∈ Rd with ∀1 ≤ t ≤ T : yt⟨w⋆, xt⟩ ≥ γ
(margin condition), the number of mistakes satisfies

T∑
t=1

1{ŷt ̸= yt} ≤ d log2

(
6∥w⋆∥2 ·max1≤t≤T ∥xt∥2

γ

)
We now prove this statement.

Proof. Before reading this proof, it might be helpful to recall the equivalent “perturbation” defini-
tion of the margin condition.

• Strategy: we will construct a finite cover of the set of all possible halfspaces

H = {x 7→ sign(⟨w, x⟩) : w ∈ Rd, ∥w∥2 = 1},

and argue that this suffices.

• Let Cα be an α-scale cover of the unit ball

Bd
2 = {w ∈ Rd : ∥w∥2 = 1}

with respect to the Euclidean norm, that is,

∀w ∈ Bd
2 , ∃w̃ ∈ Cα with ∥w − w̃∥2 ≤ α.

• Let u⋆ = w⋆/∥w⋆∥2. From the margin condition,

∀1 ≤ t ≤ T, yt⟨u⋆, xt⟩ ≥
γ

∥w⋆∥2
:= β.

• Consider w̃ ∈ Cα such that ∥u⋆ − w̃∥2 ≤ α.

– What can we say about yt⟨w̃, xt⟩?

yt⟨w̃, xt⟩ = yt⟨w̃ − u⋆ + u⋆, xt⟩ = yt⟨w̃ − u⋆, xt⟩+ yt⟨u⋆, xt⟩.

– Observe that yt⟨u⋆, xt⟩ ≥ β by the margin condition as we previously showed.

– Also observe that ∣∣yt⟨w̃ − u⋆, xt⟩
∣∣ ≤ ∥w̃ − u⋆∥2∥xt∥2 ≤ α∥xt∥2

• Thus, choosing α = β
2max1≤t≤T ∥xt∥2 , guarantees that

∀1 ≤ t ≤ T, yt⟨w̃, xt⟩ ≥ β − α∥xt∥2 ≥ β − β

2
> 0.

62

• Because of the margin assumption, even if we “perturb” w⋆ a little bit, we would still get
correct classifications. This allows us to cover the infinite space.

• Now we can run the Halving algorithm with the initial version space

V1 = {x 7→ sign(⟨wα, x⟩) : wα ∈ Cα}.

• By the guarantee of Halving10, the number of mistakes is at most log2|V1| ≤ log2|Cα|

• To conclude, from known bounds on the covering number of Bd
2 , it follows that

|Cα| ≤
(
3

α

)d

.

• Thus with some algebra and expanding out α, we get that the number of mistakes is at most

d log2

(
6∥w⋆∥2 ·max1≤t≤T ∥xt∥2

γ

)
.

Phew! So far we have been assuming that there will be a linear separator with a margin holding
over all rounds/samples. But this may not always be the case. We can relax this assumption and
instead aim to compete with:

OPTγ := min
w∈Rd,∥w∥2=1

t∑
t=1

1{yt⟨w, xt⟩ < γ}

or essentially the fewest possible number of γ-margin violations we can get through a unit-norm
halfspace. As we would expect, when the (γ)-margin condition is met meaning ∃ w⋆ ∈ Rd s.t.
∥w⋆∥2 = 1 and ∀1 ≤ t ≤ T, yt⟨w⋆, xt⟩ ≥ γ, then OPTγ = 0. From this we can present a similar
bound to Theorem 6.21, but for regret:

Theorem 6.22 (Halving Algorithm Regret Bound). For any γ > 0, there exists an online algorithm
A such that on any sequence {(xt, yt)}Tt=1, A achieves regret

T∑
t=1

E [1{ŷt ̸= yt}]−OPTγ ≤

√
T

2
d log2

(
6max1≤t≤T ∥xt∥2

γ

)
Before proving this theorem, we can reason about it a little bit. If γ gets bigger, it makes sense

that the bound gets tighter as more of the γ-margin violations counted in OPTγ likely correspond
to incorrect classifications (counted in E [1{ŷt ̸= yt}] instead of a correct classification with a margin
< γ. So the two terms will be closer to each other.

We now the proof below:

Proof. Similar reasoning to before.

10The reason we can apply the Halving algorithm on V1 is directly from our concluded result stated in the bullet
above: Cα contains w̃ (recall w̃) =⇒ sign(⟨w̃, x⟩) ∈ V1, where this halfspace can realize all our samples.

63

• Strategy is similar to before.

• Let α = γ
/(

2max1≤t≤T ∥xt∥2
)
and let Cα be an α-scale cover of the unit ball

Bd
2 = {w ∈ Rd : ∥w∥2 = 1}

with respect to the Euclidean norm, that is,

∀w ∈ Bd
2 , ∃w̃ ∈ Cα such that ∥w − w̃∥2 ≤ α.

• Fix an arbitrary w ∈ Bd
2 and consider w̃ ∈ Cα with ∥w − w̃∥2 ≤ α.

– Consider an example (xt, yt) from the sequence {(xt, yt)}Tt=1.

– If yt⟨w, xt⟩ ≥ γ, i.e., 1{yt⟨w, xt⟩ < γ} = 0, then

yt⟨w̃, xt⟩ ≥ yt⟨w, xt⟩ − |⟨w̃ − w, xt⟩| ≥ γ − ∥w̃ − w∥2∥xt∥2 ≥ γ − α∥xt∥2 ≥ γ − γ/2 > 0,

by the choice of α and ∥w − w̃∥2 ≤ α.

• This implies by contrapositive that:

T∑
t=1

1{yt⟨w̃, xt⟩ ≤ 0} ≤
T∑
t=1

1{yt⟨w, xt⟩ < γ}

• Therefore, we have that

min
w̃∈Cα

T∑
t=1

1{yt⟨w̃, xt⟩ ≤ 0} ≤ min
w∈Rd

∥w∥2=1

T∑
t=1

1{yt⟨w, xt⟩ < γ} = OPTγ

• Based on the above analysis, it suffices to run Multiplicative Weights using the (finite) set
Cα as experts with the loss function 1{yt⟨w̃, xt⟩ ≤ 0}.

– Invoking its regret guarantee from Corollary 6.16 implies that

T∑
t=1

E [1{ŷt ̸= yt}]− min
w̃∈Cα

T∑
t=1

1{yt⟨w̃, xt⟩ ≤ 0} ≤
√

T

2
ln |Cα|.

• Combining the above two bullets and expanding out ln |Cα| yields the stated regret bound.

64

Brief Comment on Online-to-Batch Conversions. We close with a brief revisiting of online-
to-batch conversions, where we take an online learner to create a non-trivial sample batch learner.
Here, we consider the averaging sample batch learner, which works as follows:

• Input: an online learner A, i.i.d. training samples S = {(x1, y1), . . . , (xm, ym)} ∼ D.

• Run the online learner A on the sequence (x1, y1), . . . , (xm, ym) to obtain

h1 = A(∅), . . . , hi = A
(
(x1, y1), . . . , (xi−1, yi−1)

)
, . . . , hm = A

(
(x1, y1), . . . , (xm−1, ym−1)

)
.

• Output the average h̄ = 1
m

∑m
i=1 hi.

Our claim is as follows:

∀ distributions D over X × Y,ES∼Dm [LD(Ā(S))] ≤ inf
h∈H

LD(h) + Reg(A;H,m)

where the last term is a regret term. This can be shown as follows:

ES∼Dm

[
LD

(
Ā(S)

)]
= ES∼Dm

[
LD

(
1

m

m∑
i=1

hi

)]
= ES∼Dm

[
1

m

m∑
i=1

LD(hi)

]

= ES∼Dm

[
1

m

m∑
i=1

ℓ
(
hi, (xi, yi)

)]
≤ ES∼Dm

[
inf
h∈H

1

m

m∑
i=1

ℓ
(
h, (xi, yi)

)]
+Reg︸ ︷︷ ︸

definition of a regret bound with ES∼Dm applied on all sides

≤ inf
h∈H

LD(h) + Reg

where you can convince yourself of the last inequality E[inf . . .] ≤ inf E[. . .].

65

Chapter 7

An Aside: Game-Theoretic Learning
(Lecture 11)

A lot of the learner/adversary problems we have been looking at so far can be viewed through a
game-theoretic lens. As such, we introduce some game theory fundamentals on minmax optimiza-
tion in this short chapter.

Let us consider two player zero-sum games (e.g. rock, paper, scissors). The game can be defined
by a matrix M ∈ [0, 1]m×n where when row-player chooses row i and column-player chooses row j,
the row-player will incur loss M(i, j). An example game matrix is given below1:

The goal is for the row-player to minimize their loss, and for the column-player to maximize
their loss. Each player will have their own strategies. Allowing for randomized (or mixed) strategies,
we can say that the row-player has a distribution P over the rows and the column-player has a
distribution Q over the the columns. Assuming independence of the strategies (i.e. P ⊥ Q), the
expected loss is M(P,Q) =

∑
i,j P (i)Q(j) ·M(i, j).

Let us now consider what would happen in a sequential play:

• Suppose row-player plays the first strategy P .

• Column-player can then maximize loss by playing the Q that maximizes M(P,Q). The row-
player loss will be maxQM(P,Q).

• Knowing this, the row-player should choose P to minimize maxQM(P,Q).

• Thus, the loss of the row-player will be minP maxQM(P,Q), and the strategy P ⋆ that realizes
this is called a minimax strategy.

1Credit: From R. Schapire and Y. Freund, Boosting: Foundations and Algorithms, Chapter 6, Section 6.1.

66

If the roles were reversed and the column-player would play first, their loss would be maxQminP M(P,Q).
The strategy Q⋆ that realizes this would be called an maxmin strategy.

The Minmax Theorem. Intuitively, we would expect the player who chooses last to have an
advantage as it plays after knowing the opponent’s strategy. So if P plays first we would expect
maxQminP M(P,Q) ≤ minP maxQM(P,Q), where recall that the column-player aims to increase
maxQminP M(P,Q).

It turns out that there is no real advantage to playing first (i.e. the inequality cannot be made
strict). This is given in the below theorem:

Theorem 7.1 (Minmax Theorem). For any finite matrix M with entries in [0, 1],

max
Q

min
P

M(P,Q) = min
P

max
Q

M(P,Q) := v

where v is often called the value of the game. So the minmax P ⋆ (maxmin Q⋆) strategy will
incur loss at most (at least) v, regardless of the column (row) strategy.

We now prove this theorem:

Proof. Perhaps unexpectedly, will use Multiplicative Weights!

• First, minP maxQM(P,Q) ≥ maxQminP M(P,Q).

– Fix any P̃ and Q, M(P̃ , Q) ≥ minP M(P,Q).

– Thus, maxQM(P̃ , Q) ≥ maxQminP M(P,Q).

– But this was for any fixed P̃ and so applying minP̃ yields the desired result.

• Second, minP maxQM(P,Q) ≤ maxQminP M(P,Q).

– We will use Multiplicative Weights!

– Specifically, we consider a sequential game for T rounds.

∗ Initialize P1 to be uniform over rows of M .

∗ For 1 ≤ t ≤ T :

· Qt = argmaxQM(Pt, Q).

· Pt+1(i) =
Pt(i) exp

(
− ηM(i, Qt)

)
Zt

.

– Let P̄ = 1
T

∑T
t=1 Pt and Q̄ = 1

T

∑T
t=1Qt. Then, we have:

min
P

max
Q

M(P,Q) ≤ max
Q

M(P̄ , Q) (plug in P̄)

= max
Q

1

T

T∑
t=1

M(Pt, Q) (definition of P̄)

≤ 1

T

T∑
t=1

max
Q

M(Pt, Q) (max vs. average)

=
1

T

T∑
t=1

M(Pt, Qt) (definition of Qt)

67

≤ min
P

1

T

T∑
t=1

M(P,Qt) + ∆T (MW regret guarantee)

= min
P

M(P, Q̄) + ∆T (definition of Q̄)

≤ max
Q

min
P

M(P,Q) + ∆T

– By MW regret guarantee, ∆T ≤

√
ln
(
|Rows of M |

)
2T , which can be made arbitrarily small

by taking T large. Note that the T term in the denominator (cf. Corollary 6.16) comes
from ∆T being the regret bound averaged over all T timesteps.

– So P̄ is an approximate minmax strategy:

max
Q

M(P̄ , Q) ≤ max
Q

min
P

M(P,Q) + ∆T

which means that using P̄ , any strategy Q will have a payoff arbitrarily closely bounded
to the value of the game.

– And similarly, Q̄ is an approximate maxmin strategy:

min
P

M(P, Q̄) ≥ min
P

max
Q

M(P,Q) + ∆T

68

Chapter 8

One-Inclusion Graph (Lecture 12)

This lecture was given by Yale FDS Postdoctoral Fellow Alkis Kalavasis. We use this last lecture as
a primer to an extremely useful but unintuitive object in learning theory: the one-inclusion graph.
Note that the proofs in this section are especially difficult, and hence grasping their main ideas is
more than sufficient.

We start by understanding the Permutation Mistake Bound Model, which uses the standard
setup of an instance space X and binary labels Y = {±1}. Moreover, suppose we have a hypothesis
class H ⊆ Y X with vc(H) = d < ∞. We can then write that H induces the following set REH(n)
of realizable datasets:

REH(n) = {{(x1, h(x1)), . . . , (xn, h(xn))} : x1, . . . , xn ∈ X,h ∈ H}

Recall that our typical online learning strategy forH is a mappingQ :
⋃

n>1(X×Y)n−1×X → Y .
We are now interested in the leave-one-out (LOO) mistake bound:

MH,Q(n) = sup
S∈REH(n)

1

n

n∑
i=1

1{Q(S−i, xi) ̸= yi}

where S−i is just S − {(xi, yi)}. Observe that we are essentially using (xi, yi) as the test point
for “hypothesis” Q(S−i, ·). As is reasonable, the adversary would pick the worst-case realizable
dataset S ∈ REH(n) with knowledge of Q. Thus, our end goal should be to design a Q with a small
LOO mistake bound.

You might wonder why we are a priori caring so much about minimizing this weird LOO Mistake
Bound. We present and prove the following theorem connecting this bound to the population error:

Theorem 8.1 (LOO Mistake Bound Controls Population Error). For any prediction strategy Q,
any distribution D over X × Y such that ∃h⋆ ∈ H where LD(h

⋆) = 0,

ES∼Dn

[
LD(QS)

]
= ES∼Dn

[
E(x,y)∼D

[
1{Q(S, x) ̸= y}

]]
≤ MH,Q(n+ 1).

69

Proof. This proof relies mainly on getting LD(QS) into a form similar to the LOO Mistake Bound.

ES∼Dn

[
LD(QS)

]
= ES∼Dn

[
E(x,y)∼D

[
1{Q(S, x) ̸= y}

]]
= ES̃∼Dn+1

[
1

n+ 1

n+1∑
i=1

1{Q(S̃−i, xi) ̸= yi}
]

≤ sup
S̃∈REH(n+1)

1

n+ 1

n+1∑
i=1

1{Q(S̃−i, xi) ̸= yi} = MH,Q(n+ 1)

Later, we will use Theorem 8.1 to establish learnability. For now, we return to our original
question:

How do we design Q to minimize the LOO Mistake Bound?

For that, we will require some more advanced technology.

Defining the One-Inclusion Graph. Alkis notes that this is very counterintuitive. We start
with setup:

• Given a hypothesis class H and n points x1, . . . , xn ∈ X, we define the following graph
Gn = (Vn, En).

• The set of vertices can be given as:

Vn = {{(x1, h(x1)), . . . , (xn, h(xn))} | h ∈ H}

– So every possible labeling of x1, . . . , xn by some h ∈ H corresponds to a vertex in V .

– Given that H has VC dimension d, what is an upper bound on |Vn|? (Hint: Sauer-
Shelah-Perles Lemma)

• The set of edges (note ∆ gives the symmetric difference):

En = {{v, u} | v, u ∈ V and u∆v = {(xi,+), (xi,−)} for some i ∈ [n]}

– So two vertices v, u ∈ V are connected by an edge ⇐⇒ they disagree on the label of a
single datapoint / coordinate i ∈ [n]

We now attach a below figure from Haussler, Littlestone, and Warmuth (1994) of a 1-inclusion
graph for a hypothesis class of VC Dimension 2. Note that in the below graph, a vertex labeled
as {x1, x2} means that for some h ∈ H, the only data points in x1, . . . , xn labeled as +1 by h are
{x1, x2}.

70

https://en.wikipedia.org/wiki/Symmetric_difference
https://dl.acm.org/doi/abs/10.1006/inco.1994.1097

So we can see that all connected vertices are one observation away from each other. Currently,
observe that our one-inclusion graph Gn = (Vn, En) is orientationless (i.e. all edges are undirected.)
We can define an orientation of Gn as a mapping O : En → Vn such that O({v, u}) ∈ {v, u}. Now
recall for a vertex v ∈ Vn, the degree of v or deg(v) is the number of edges incident of v. Furthermore,
by definition of En, maxv∈Vn deg(v) ≤ n. There is one kind of degree we especially care about, the
out-degree. Formally speaking, for an orientation O : En → Vn of Gn and a vertex v ∈ Vn, the
out-degree outdeg(v;O) will be the number of edges incident on v directed away from v.

As you may be able to guess, the orientations will be crucial here. Fix an orientation O : En →
Vn. We can define a prediction strategy QO based on O as follows:

• Receive n − 1 labeled points S−n = {(x1, y1), . . . , (xn−1, yn−1)} and unlabeled point xn ∈ X
as input. Assume S−n is realizable by H.

• Consider the one-inclusion graph Gn constructed with {x1, . . . , xn}

• Case 1

– If there is only a unique vertex v such that S−n ⊂ v, then predict label yn of xn that
appears in this vertex.

• Case 2

– If there are two vertices v, u ∈ V such that S−n ⊂ v and S−n ⊂ u, that means H induces
two possible labelings for xn. Moreover, by definiton of En there is an edge between v
and u. So predict the label of the vertex which orientation O points towards.

71

Thus O is essentially deciding our tiebreakers in the (much more frequent) second case. Now
the magic of the one-inclusion graph out-degree is its relationship to the LOO Mistake Bound. We
present this below:

max
S∈REH(n)

1

n

n∑
i=1

1{QO(S−i, xi) ̸= yi} = max
v∈Vn

outdeg(v;O)

n
, (⋆)

The reasoning is as follows: ∀S ∈ REH(n), ∃ v = S ∈ Vn where observe that for a fixed xi:

QO(S−i, xi) ̸= yi ⇐⇒ O directs an edge away from v

so summing across all 1 ≤ i ≤ n yields
∑n

i=1 1{QO(S−i, xi) ̸= yi} = outdeg(v;O). So for any
vertex v ∈ V , the number of out-going edges based on orientation O will be the number of times
prediction strategy Q makes a mistake. So from (⋆), it is clear that we want to minimize the
maximum out-degree. And here is a crazy theorem giving is just that bound.

Theorem 8.2 (Oriented OIG has VC-Bounded Maximum Out-degree). For any H and any
x1, . . . , xn ∈ X, the induced one-inclusion graph Gn = (Vn, En) can be oriented such that the
maximum out-degree is at most d (VC dimension of H). That is, there exists O⋆ : En → Vn such
that

max
v∈Vn

outdeg(v;O⋆) ≤ d

Corollary 8.3 (Finite VC Dimension Bounds LOO Mistake Bound). For any class H with VC
dimension d, there exists a prediction strategy Q based on orienting the one-inclusion graph such
that the LOO mistake bound

MH,Q(n) ≤
d

n
.

Note that it is highly non-trivial to both prove Theorem 8.2 and actually construct the one-
inclusion graph.

We now prove Theorem 8.2. This proof is done through two lemmas, both of which we provide
below with proofs. Before reading through the proofs, it is probably good to first just read both the
Lemma statements and see how they combine to yield Theorem 8.2. Moreover, Alkis comments that
understanding the W ̸= ∅ subcase of Case Two in the first Lemma is near impossible.

Lemma 8.4 (OIG’s Density Bounded by VC Dimension Lemma). For any H and any x1, . . . , xn ∈
X, the induced one-inclusion graph Gn = (Vn, En) satisfies:

density(Gn) :=
|En|
|Vn|

≤ d := vc(H)

Proof. The case d = 0 is trivial. We assume that d > 0. The proof proceeds by induction on n.
When n = 1, Gn contains one vertex, and the result follows trivially for all d. For the induction
step, we will prove the result for n > 0, assuming that the result holds for n − 1. There are two
cases.

Case 1. xn = xi for some 1 ≤ i < n. Let F = GH(x1, . . . , xn−1), where GH(·) essentially creates
the OIG from H and the given datapoints. Since xn already appears in {x1, . . . , xn−1}, the vertex
set of F is the same as that of G, and the edge set of G is the same as the edge set of F , except

72

that all edges that are incident on xn in F are missing1 from G. Hence dens(G) ≤ dens(F) < d by
assumption.

Case 2. xn ̸= xi for all 1 ≤ i < n. We construct a mapping η of the vertices of G onto the vertices
of another 1-inclusion graph F . Then F = GH(x1, . . . , xn−1). The mapping η from vertices of G
to vertices of F is defined by

η(v) = v − {(xn, yn)}.

Thus two vertices of G map to the same vertex of F if and only if there is an edge between them
that is specifically caused by disagreement in coordinate n. Note that either one or two vertices of
G map to each vertex of F . Now let W be the set of all vertices of F whose inverse image under η
contains two vertices of G.

• If W is empty, then all vertices in G never have single disagreements with each other on only
the nth coordinate. Moreover, W = ∅ means η is bijective =⇒ the number of vertices of G
equals the number of vertices of F and for every edge of G there exists a distinct corresponding
edge in F (as edges in G must be for coordinate disagreements other than the nth coordinate).
Thus we have dens(G) ≤ dens(F) < d by the induction hypothesis, and we are done.

• In the case that W ̸= ∅, we cry2.

Lemma 8.5 (Density Upper Bound Yields Max Out Degree Bound). An arbitrary graph G = (V,E)
with density(G) ≤ d can be oriented such that the maximum out-degree is at most d.

Proof. We will prove this statement up to constants (i.e. we show the maximum out-degree is at
most 2d.)

• We will build an orientation O⋆ of the original graph G = (V,E) iteratively. Define G(0) := G.

• Observe density(G(0)) =
|E(G(0))|
|V (G(0))|

≤ d.

• The average degree of G(0) is
1

|V (G(0))|
∑

v∈V (G(0)) degG(0)(v) =
2|E(G(0))|
|V (G(0))|

≤ 2d.

• Hence there exists a vertex v ∈ V (G(0)) such that degG(0)(v) ≤ 2d.

• In the final orientation O⋆ of the original graph G, orient all edges of G(0) incident to v
outward from v. After this step, outdeg(O⋆, v) = degG(0)(v) ≤ 2d.

• Now delete v and all edges incident to v from G(0) graph to obtain G(1).

1This is due to a small technical condition we skipped when defining En. In addition to our constraints for two
vertices to be connected via an edge, the data point they are disagreeing over must only appear once in x1, . . . , xn.
Thus because xn = xi, these edges in F will not be in G.

2We skipped this case in class due to running out of time and how difficult it was. The proof (sketch) is in the
slides.

73

• Observe that G(1) can equivalently be constructed by removing the hypothesis h ∈ H that
induces the labeling of v, and using the resulting class H ′ ⊂ H. Moreover by Lemma 8.4, the
new graph still satisfies density(G(1)) ≤ d as this bound is not dependent on n but H.

• Repeat the same procedure on G(1) (and then on G(2), G(3), . . .).

• Every vertex v is processed exactly once and set such that its out-degree is ≤ 2d in the final
O⋆ orientation. Therefore ∀v ∈ V, outdeg(v;O⋆) ≤ 2d =⇒ maxv∈V outdeg(v;O⋆) ≤ 2d.

Congratulations! To some extent, we have proven Theorem 8.2. In case you needed a reminder
of why this all matters it is stated below, where > can be taken to literally mean “controls”:

Finite VC Dimension > Max Out-Degree in OIG = LOO Mistake Bound > Population Error

and in more rigorous proof form:

Theorem 8.6 (OIG-Proved Result of VC Dimension Yields PAC-Learnability). For any class H
with vc(H) = d, there exists an (ϵ, δ)-PAC-learner OIG (i.e. based on the one-inclusion graph) for
H with sample complexity:

m(ϵ, δ) ≤ O

(
d

ϵ
· log 1

δ

)

Proof. Set n = 2d/ε. For any S ∼ Dn−1, let QS be the prediction strategy based on the one-
inclusion graph.

• By Markov’s inequality,

PS∼Dn−1 [LD(QS) > ε] ≤ ES∼Dn−1 [LD(QS)]

ε
≤

MH,Q(n)

ε
≤ d

nε
=

1

2
.

• Boosting the confidence δ:

– Draw k independent sets S1, . . . , Sk, each of size n− 1. By independence,

PS1∼Dn−1,...,Sk∼Dn−1

[
∀i : LD(QSi) > ε

]
≤
(1
2

)k
.

– By setting k = log2(1/δ), the failure event above happens with probability at most δ.

• Validation:

– We need this step to choose which QSi to return. We draw an extra dataset S̃ of size
O((log(k) + log(1/δ))/ε) and output the QSi which achieves smallest error on S̃.

Note that this result is slightly different than the realizable PAC-learnable sample complexity
given in Theorem 1.18.

Next Class. We will have final presentations & pizza! This is the end of my notes. Thank you.

74

	PAC Learning and VC Theory
	Course Logistics (Lecture 1)
	Introducing the Statistical Learning Theory Framework (Lecture 1)
	Consistent Learning Rule Bound for Finite Hypothesis Class (Lecture 1)
	Uniform Convergence & the Probably Approximately Correct (PAC) Framework (Lecture 2)
	Vapnik-Chervonenkis (VC) Dimension (Lecture 2)
	PAC-Learnability of Hypothesis Classes with Finite VC Dimension (Lecture 3)

	Computational Aspects of PAC Learning
	Efficient PAC Learnability (Lecture 4 & 5)

	Non-Uniform Learning
	Non-Uniform Learning over Countable Hypothesis Classes (Lecture 5)
	Non-Uniform Learning over Uncountable Hypothesis Classes (Lecture 5)

	Boosting & Sample Compression
	Introduction to Boosting (Lecture 6)
	Introduction to Sample Compression Learning (Lecture 6)
	Margin-Based Analysis of Boosting (Lecture 7)
	Sample Compression Schemes, Revisited (Lecture 7)

	Rademacher Complexity
	Introduction to Rademacher Complexity (Lecture 8)
	Applications of Rademacher Complexity & Other Complexity Measures (Lecture 8)

	Online Learning
	Introduction to Online Learning (Lecture 9)
	Littlestone Dimension for Online Learning (Lecture 9)
	Beyond Realizability: Introducing Regret (Lecture 10)
	Connecting Boosting and Online Learning (Lecture 10)
	Margin-Based Learning (Lecture 11)

	An Aside: Game-Theoretic Learning (Lecture 11)
	One-Inclusion Graph (Lecture 12)

