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Convexity on a Line, Convex Duality, Farkas’ Lemma

1 Review: Convexity on a Line

Last Time: Convex Sets & Functions. Recall some characterizations of convexity of functions,
which we can use

1. First-order convexity: ∀x, y ∈ dom(f), f(x) ≥ f(y) +∇f(y)T (x− y)

2. Second-order convexity: ∀x ∈ dom(f),∇2f(x) ≥ 0

3. Convexity along a line (Today)

We now detail this procedure (#3) to check for convexity on a given function f along a line.

Theorem 1.1. Pick starting point x0 and a direction z⃗. To show that f is convex along this line
given by z⃗, we want to check that for all sufficiently small t ≥ 01, the function f(x0 + tz⃗) is convex
as a function of t.

Note that if we show convexity for all x0 and direction z, we have shown that f is convex. We do
this in our following example.

Example 1.2. Consider the function X 7→ log det(X−1), which is convex on X > 0.
We want to check that X0+tZ is convex for all X > 0 to conclude that the above function is convex.
To do so, we must be sure that X0 + tZ is positive semi-definite (so as for the log(·) function to
operate on a well-defined domain). To ensure this, we impose the constraint that Z is symmetric.
We now verify with matrix algebra that log det((X0 + tZ)−1) is convex as a function of t:
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For clarity, we WTS that this final expression is convex for this arbitrarily chosen (with constraints)
X0 and Z to show that X 7→ log det(X−1) is convex. We approach this with a property of the
determinant: the determinant of a matrix is equal to the product of its eigenvalues =⇒ log-
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0 , is equal to the sum of its eigenvalues. The
eigenvalues of the identity matrix are all equal to one and so we can re-express this function as:
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1The value of t must be sufficiently small because we must have that x0 + tz⃗ ∈ dom(f)
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First, recall that the function − log(x) is trivially convex for R+. Consider this term of interest:
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Note that each term − log (1 + tλi) is convex in t because it is the composition of the affine trans-
formation t 7→ tλi with the convex function − log(x), where x = 1 + tλi. Affine transformations
preserve this convexity and so each of these terms in the sum is convex =⇒ the sum of these
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is convex in t (i.e. along this

line.) Thus, this proves that X 7→ log det(X−1) is convex as we have shown it is convex for any
line (defined by a starting point and direction.)

2 Introduction to Convex Duality

We now begin our study of Convex Duality. The term duality comes from “dual space” notated by
X∗ = all linear functions on a vector space X = Rn where X∗ ∼= X. Stated again, this means that
each linear function is isomorphic to a vector representation in X.
The most fundamental duality result is known as Separation Theorem. We present it below.

Theorem 2.1 (Separation Theorem). Let C ⊂ X be a closed, convex set and let x0 /∈ C. Then,
there exists a function x∗ ∈ X∗ and a constant δ > 0 s.t. ∀x ∈ C:

⟨x∗, x0⟩+ δ ≤ ⟨x∗, x⟩.

Intuitively, Separation Theorem is telling us that for any point outside of our convex set C, we can
“separate” it via some linear function x∗ ∈ X∗ be at least δ-distance away from any point in the
convex set. Separation Theorem is a foundational result of functional analysis and has led to many
important results, including Farkas’ Lemma which we will state and prove:

Theorem 2.2 (Farkas’ Lemma). Let A ∈ Rm×n, b ∈ Rm. Exactly one of the following is true:

1. There exists x ≥ 0 such that Ax = b.

2. There exists y such that AT y ≥ 0 and bT y < 0.

First note that this statement is saying that exactly one of the following is true. Before proving this
statement, let us take a second to appreciate this lemma: Farkas’ Lemma allows us to dramatically
reduce the amount of work we need to expend in verifying that a given solution to a set of linear
equations (i.e. a solution u∗ for Au = b) exists. We proceed with the proof.
Pf : Let A = conic hull of the columns of A, where the columns are given by {a1, . . . , an}. Recall
that A = {Ax : x ≥ 0}. We prove this statement by casework:

1. Case One: ∃ x ≥ 0 s.t. Ax = b.

This is our first case, and also the first statement in Farkas’ Lemma. Note however that
∃ x ≥ 0 s.t. Ax = b ⇐⇒ b ∈ A. Thus, in our consideration of the other case, we are given
b /∈ A.
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2. Case Two: b /∈ A
We apply Separation Theorem with conic hull A as our closed, convex set and x0 = b /∈
A =⇒ ∃ x∗ = y s.t. ∀a ∈ A, ⟨y, b⟩ < ⟨y, a⟩. Furthermore, note that 0 ∈ A =⇒
(by Separation Theorem) bT y < ⟨y, 0⟩ = 0 as b /∈ A. This proves bT y < 0. Finally be-
cause b is separated from A by hyperplane defined by y we have that ∀xi ≥ 0, bT y < 0 ≤
Σxi⟨ai, y⟩ ⇐⇒ ∀i, aTi y ≥ 0. Because aTi y = AT y ≥ 0, we have entirely proved the second
case in Farkas Lemmas’.

This completes our proof of Farkas’ Lemma using Separation Theorem. We present one last (mo-
tivating) example.

Example 2.3. Take C,D as some disjoint closed bounded convex sets. This means there exists
x∗ ∈ X∗ and δ > 0 such that

⟨x∗, c⟩+ δ ≤ ⟨x∗, d⟩ ∀c ∈ C and ∀d ∈ D.

This is the main idea behind Support Vector Machines (SVMs), in which we want to find some
separating hyperplane of two convex hulls corresponding to different high-dimensional training data
of two different classes.
Pf : Let us define set C −D = {c− d : c ∈ C, d ∈ D}. It is a nice exercise to prove that C −D is
a closed, convex set. Furthermore, note 0 /∈ C −D and so applying Separation Theorem with our
choice x0 = 0 /∈ C −D, we have that ∃ x∗ and ∃ δ > 0 s.t. ∀y ∈ C −D, ⟨x∗, y⟩+ δ ≤ ⟨x∗, 0⟩. This
shows that for any arbitrary choice of c ∈ C and d ∈ D, ⟨x∗, c− d⟩+ δ ≤ ⟨x∗, 0⟩ =⇒ ⟨x∗, c⟩+ δ ≤
⟨x∗, d⟩.
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