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Convexity on a Line, Convex Duality, Farkas’ Lemma

1 Review: Convexity on a Line

Last Time: Convex Sets & Functions. Recall some characterizations of convexity of functions,
which we can use

1. First-order convexity: Vz,y € dom(f), f(z) > f(y) + V£ (y)T(z — y)
2. Second-order convexity: Vo € dom(f), V2f(z) >0

3. Convexity along a line (Today)

We now detail this procedure (#3) to check for convexity on a given function f along a line.

Theorem 1.1. Pick starting point xg and a direction Z. To show that f is convexr along this line
given by Z, we want to check that for all sufficiently small t > (EL the function f(xo+tZ2) is convex
as a function of t.

Note that if we show convexity for all xy and direction z, we have shown that f is convex. We do
this in our following example.

Example 1.2. Consider the function X + log det(X '), which is convex on X > 0.

We want to check that Xy+1tZ is convex for all X > 0 to conclude that the above function is convex.
To do so, we must be sure that X + tZ is positive semi-definite (so as for the log(-) function to
operate on a well-defined domain). To ensure this, we impose the constraint that Z is symmetric.
We now verify with matrix algebra that log det((Xo + tZ)!) is convex as a function of ¢:

1 11\ 1
log det ((Xo +tZ)™') = —logdet(Xo + tZ) = —log det (Xg <I +tX, *ZX, 2) Xg)

11
= —log det(Xy) — log det <I + X, *ZX, 2)

For clarity, we WTS that this final expression is convex for this arbitrarily chosen (with constraints)
X and Z to show that X +— logdet(X~!) is convex. We approach this with a property of the
determinant: the determinant of a matrix is equal to the product of its eigenvalues = log-

1 o1
determinant of a matrix, in our case I + X, *ZX, ?, is equal to the sum of its eigenvalues. The
eigenvalues of the identity matrix are all equal to one and so we can re-express this function as:

n _1 1
—logdet(Xo) — ) _log (1 + N (XO 27X, 2))
=1

!The value of ¢t must be sufficiently small because we must have that zo + tZ € dom(f)




N

11 1
where \; <X0 *ZX, 2) represents the i-th eigenvalue of X *ZX, *.

First, recall that the function — log(z) is trivially convex for R*. Consider this term of interest:

i _1 1
—> log <1+m (XO 27X, 2)) :

=1

Note that each term —log (1 + t)\;) is convex in t because it is the composition of the affine trans-
formation ¢ +— t\; with the convex function —log(x), where x = 1 + t);. Affine transformations

preserve this convexity and so each of these terms in the sum is convex = the sum of these
1

11
convex functions is convex so — Y, log (1 +tA; <X0 *ZX, 2)) is convex in t (i.e. along this

line.) Thus, this proves that X + logdet(X 1) is convex as we have shown it is convex for any
line (defined by a starting point and direction.)

2 Introduction to Convex Duality

We now begin our study of Convex Duality. The term duality comes from “dual space” notated by
X* = all linear functions on a vector space X = R™ where X* = X. Stated again, this means that
each linear function is isomorphic to a vector representation in X.

The most fundamental duality result is known as Separation Theorem. We present it below.

Theorem 2.1 (Separation Theorem). Let C C X be a closed, convezr set and let xo ¢ C. Then,
there exists a function x* € X* and a constant 6 > 0 s.t. Vx € C:

(x*, ) + 0 < (2", x).

Intuitively, Separation Theorem is telling us that for any point outside of our convex set C, we can
“separate” it via some linear function z* € X* be at least d-distance away from any point in the
convex set. Separation Theorem is a foundational result of functional analysis and has led to many
important results, including Farkas’ Lemma which we will state and prove:

Theorem 2.2 (Farkas’ Lemma). Let A € R™*" b € R™. Ezactly one of the following is true:
1. There exists x > 0 such that Ax = b.
2. There exists y such that ATy >0 and by < 0.

First note that this statement is saying that exactly one of the following is true. Before proving this
statement, let us take a second to appreciate this lemma: Farkas’ Lemma allows us to dramatically
reduce the amount of work we need to expend in verifying that a given solution to a set of linear
equations (i.e. a solution u* for Au = b) exists. We proceed with the proof.

Pf: Let A = conic hull of the columns of A, where the columns are given by {a,...,a,}. Recall
that A = {Ax : z > 0}. We prove this statement by casework:

1. Case One: 3z > 0s.t. Az =b.

This is our first case, and also the first statement in Farkas’ Lemma. Note however that
Jdz>0st. Az =0 <= b€ A. Thus, in our consideration of the other case, we are given

b A.



2. Case Two: b¢ A

We apply Separation Theorem with conic hull A as our closed, convex set and z¢p = b ¢
A = Ja2* =yst. Va e A(y,b) < (y,a). Furthermore, note that 0 € A —
(by Separation Theorem) b7y < (y,0) = 0 as b ¢ A. This proves b’y < 0. Finally be-
cause b is separated from A by hyperplane defined by y we have that Vao; > 0,67y < 0 <
Yxilai,y) <> Vi,aly > 0. Because aly = ATy > 0, we have entirely proved the second
case in Farkas Lemmas’.

This completes our proof of Farkas’” Lemma using Separation Theorem. We present one last (mo-
tivating) example.

Example 2.3. Take C, D as some disjoint closed bounded convex sets. This means there exists
z* € X* and 6 > 0 such that

(x*,¢)+ 06 < (z*,d) Vce CandVde D.

This is the main idea behind Support Vector Machines (SVMs), in which we want to find some
separating hyperplane of two convex hulls corresponding to different high-dimensional training data
of two different classes.

Pf: Let us define set C — D = {c—d:ce C,d € D}. It is a nice exercise to prove that C' — D is
a closed, convex set. Furthermore, note 0 ¢ C'— D and so applying Separation Theorem with our
choice zyp =0 ¢ C' — D, we have that 3 2* and 3 > 0s.t. Vy € C — D, (z*,y) + 6 < (z*,0). This
shows that for any arbitrary choice of c € C' and d € D, (z*,¢ —d) + 6 < (z*,0) = (z*,¢) +J <
(x*,d).
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